{"title":"复杂网络度分布拟合的鲁棒方法","authors":"Shane Mannion, Pádraig MacCarron","doi":"10.1093/comnet/cnad023","DOIUrl":null,"url":null,"abstract":"This work introduces a method for fitting to the degree distributions of complex network datasets, such that the most appropriate distribution from a set of candidate distributions is chosen while maximizing the portion of the distribution to which the model is fit. Current methods for fitting to degree distributions in the literature are inconsistent and often assume a priori what distribution the data are drawn from. Much focus is given to fitting to the tail of the distribution, while a large portion of the distribution below the tail is ignored. It is important to account for these low degree nodes, as they play crucial roles in processes such as percolation. Here we address these issues, using maximum likelihood estimators to fit to the entire dataset, or close to it. This methodology is applicable to any network dataset (or discrete empirical dataset), and we test it on over 25 network datasets from a wide range of sources, achieving good fits in all but a few cases. We also demonstrate that numerical maximization of the likelihood performs better than commonly used analytical approximations. In addition, we have made available a Python package which can be used to apply this methodology.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"73 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust method for fitting degree distributions of complex networks\",\"authors\":\"Shane Mannion, Pádraig MacCarron\",\"doi\":\"10.1093/comnet/cnad023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a method for fitting to the degree distributions of complex network datasets, such that the most appropriate distribution from a set of candidate distributions is chosen while maximizing the portion of the distribution to which the model is fit. Current methods for fitting to degree distributions in the literature are inconsistent and often assume a priori what distribution the data are drawn from. Much focus is given to fitting to the tail of the distribution, while a large portion of the distribution below the tail is ignored. It is important to account for these low degree nodes, as they play crucial roles in processes such as percolation. Here we address these issues, using maximum likelihood estimators to fit to the entire dataset, or close to it. This methodology is applicable to any network dataset (or discrete empirical dataset), and we test it on over 25 network datasets from a wide range of sources, achieving good fits in all but a few cases. We also demonstrate that numerical maximization of the likelihood performs better than commonly used analytical approximations. In addition, we have made available a Python package which can be used to apply this methodology.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnad023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnad023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A robust method for fitting degree distributions of complex networks
This work introduces a method for fitting to the degree distributions of complex network datasets, such that the most appropriate distribution from a set of candidate distributions is chosen while maximizing the portion of the distribution to which the model is fit. Current methods for fitting to degree distributions in the literature are inconsistent and often assume a priori what distribution the data are drawn from. Much focus is given to fitting to the tail of the distribution, while a large portion of the distribution below the tail is ignored. It is important to account for these low degree nodes, as they play crucial roles in processes such as percolation. Here we address these issues, using maximum likelihood estimators to fit to the entire dataset, or close to it. This methodology is applicable to any network dataset (or discrete empirical dataset), and we test it on over 25 network datasets from a wide range of sources, achieving good fits in all but a few cases. We also demonstrate that numerical maximization of the likelihood performs better than commonly used analytical approximations. In addition, we have made available a Python package which can be used to apply this methodology.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network