异构自相似特征(HASC):利用关系信息进行分类

Marco San-Biagio, M. Crocco, M. Cristani, Samuele Martelli, Vittorio Murino
{"title":"异构自相似特征(HASC):利用关系信息进行分类","authors":"Marco San-Biagio, M. Crocco, M. Cristani, Samuele Martelli, Vittorio Murino","doi":"10.1109/ICCV.2013.105","DOIUrl":null,"url":null,"abstract":"Capturing the essential characteristics of visual objects by considering how their features are inter-related is a recent philosophy of object classification. In this paper, we embed this principle in a novel image descriptor, dubbed Heterogeneous Auto-Similarities of Characteristics (HASC). HASC is applied to heterogeneous dense features maps, encoding linear relations by co variances and nonlinear associations through information-theoretic measures such as mutual information and entropy. In this way, highly complex structural information can be expressed in a compact, scale invariant and robust manner. The effectiveness of HASC is tested on many diverse detection and classification scenarios, considering objects, textures and pedestrians, on widely known benchmarks (Caltech-101, Brodatz, Daimler Multi-Cue). In all the cases, the results obtained with standard classifiers demonstrate the superiority of HASC with respect to the most adopted local feature descriptors nowadays, such as SIFT, HOG, LBP and feature co variances. In addition, HASC sets the state-of-the-art on the Brodatz texture dataset and the Daimler Multi-Cue pedestrian dataset, without exploiting ad-hoc sophisticated classifiers.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"48 1","pages":"809-816"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Heterogeneous Auto-similarities of Characteristics (HASC): Exploiting Relational Information for Classification\",\"authors\":\"Marco San-Biagio, M. Crocco, M. Cristani, Samuele Martelli, Vittorio Murino\",\"doi\":\"10.1109/ICCV.2013.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing the essential characteristics of visual objects by considering how their features are inter-related is a recent philosophy of object classification. In this paper, we embed this principle in a novel image descriptor, dubbed Heterogeneous Auto-Similarities of Characteristics (HASC). HASC is applied to heterogeneous dense features maps, encoding linear relations by co variances and nonlinear associations through information-theoretic measures such as mutual information and entropy. In this way, highly complex structural information can be expressed in a compact, scale invariant and robust manner. The effectiveness of HASC is tested on many diverse detection and classification scenarios, considering objects, textures and pedestrians, on widely known benchmarks (Caltech-101, Brodatz, Daimler Multi-Cue). In all the cases, the results obtained with standard classifiers demonstrate the superiority of HASC with respect to the most adopted local feature descriptors nowadays, such as SIFT, HOG, LBP and feature co variances. In addition, HASC sets the state-of-the-art on the Brodatz texture dataset and the Daimler Multi-Cue pedestrian dataset, without exploiting ad-hoc sophisticated classifiers.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"48 1\",\"pages\":\"809-816\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

通过考虑视觉对象的特征是如何相互关联来捕捉其本质特征是最近的一种对象分类哲学。在本文中,我们将这一原理嵌入到一种新的图像描述符中,称为异构自相似特征(HASC)。HASC应用于异构密集特征映射,通过协方差编码线性关系,通过互信息和熵等信息理论度量编码非线性关联。通过这种方式,高度复杂的结构信息可以以紧凑、尺度不变和鲁棒的方式表达。HASC的有效性在许多不同的检测和分类场景中进行了测试,考虑到物体,纹理和行人,以及众所周知的基准(Caltech-101, Brodatz, Daimler Multi-Cue)。在所有情况下,使用标准分类器获得的结果都证明了HASC相对于目前最常用的局部特征描述符(如SIFT、HOG、LBP和特征共方差)的优越性。此外,HASC在Brodatz纹理数据集和Daimler Multi-Cue行人数据集上设置了最先进的技术,而无需利用特别复杂的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Auto-similarities of Characteristics (HASC): Exploiting Relational Information for Classification
Capturing the essential characteristics of visual objects by considering how their features are inter-related is a recent philosophy of object classification. In this paper, we embed this principle in a novel image descriptor, dubbed Heterogeneous Auto-Similarities of Characteristics (HASC). HASC is applied to heterogeneous dense features maps, encoding linear relations by co variances and nonlinear associations through information-theoretic measures such as mutual information and entropy. In this way, highly complex structural information can be expressed in a compact, scale invariant and robust manner. The effectiveness of HASC is tested on many diverse detection and classification scenarios, considering objects, textures and pedestrians, on widely known benchmarks (Caltech-101, Brodatz, Daimler Multi-Cue). In all the cases, the results obtained with standard classifiers demonstrate the superiority of HASC with respect to the most adopted local feature descriptors nowadays, such as SIFT, HOG, LBP and feature co variances. In addition, HASC sets the state-of-the-art on the Brodatz texture dataset and the Daimler Multi-Cue pedestrian dataset, without exploiting ad-hoc sophisticated classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信