{"title":"PIVOT:学习api -设备相关性以促进Android兼容性问题检测","authors":"Lili Wei, Yepang Liu, S. Cheung","doi":"10.1109/ICSE.2019.00094","DOIUrl":null,"url":null,"abstract":"The heavily fragmented Android ecosystem has induced various compatibility issues in Android apps. The search space for such fragmentation-induced compatibility issues (FIC issues) is huge, comprising three dimensions: device models, Android OS versions, and Android APIs. FIC issues, especially those arising from device models, evolve quickly with the frequent release of new device models to the market. As a result, an automated technique is desired to maintain timely knowledge of such FIC issues, which are mostly undocumented. In this paper, we propose such a technique, PIVOT, that automatically learns API-device correlations of FIC issues from existing Android apps. PIVOT extracts and prioritizes API-device correlations from a given corpus of Android apps. We evaluated PIVOT with popular Android apps on Google Play. Evaluation results show that PIVOT can effectively prioritize valid API-device correlations for app corpora collected at different time. Leveraging the knowledge in the learned API-device correlations, we further conducted a case study and successfully uncovered ten previously-undetected FIC issues in open-source Android apps.","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"22 1","pages":"878-888"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"PIVOT: Learning API-Device Correlations to Facilitate Android Compatibility Issue Detection\",\"authors\":\"Lili Wei, Yepang Liu, S. Cheung\",\"doi\":\"10.1109/ICSE.2019.00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heavily fragmented Android ecosystem has induced various compatibility issues in Android apps. The search space for such fragmentation-induced compatibility issues (FIC issues) is huge, comprising three dimensions: device models, Android OS versions, and Android APIs. FIC issues, especially those arising from device models, evolve quickly with the frequent release of new device models to the market. As a result, an automated technique is desired to maintain timely knowledge of such FIC issues, which are mostly undocumented. In this paper, we propose such a technique, PIVOT, that automatically learns API-device correlations of FIC issues from existing Android apps. PIVOT extracts and prioritizes API-device correlations from a given corpus of Android apps. We evaluated PIVOT with popular Android apps on Google Play. Evaluation results show that PIVOT can effectively prioritize valid API-device correlations for app corpora collected at different time. Leveraging the knowledge in the learned API-device correlations, we further conducted a case study and successfully uncovered ten previously-undetected FIC issues in open-source Android apps.\",\"PeriodicalId\":6736,\"journal\":{\"name\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"volume\":\"22 1\",\"pages\":\"878-888\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2019.00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PIVOT: Learning API-Device Correlations to Facilitate Android Compatibility Issue Detection
The heavily fragmented Android ecosystem has induced various compatibility issues in Android apps. The search space for such fragmentation-induced compatibility issues (FIC issues) is huge, comprising three dimensions: device models, Android OS versions, and Android APIs. FIC issues, especially those arising from device models, evolve quickly with the frequent release of new device models to the market. As a result, an automated technique is desired to maintain timely knowledge of such FIC issues, which are mostly undocumented. In this paper, we propose such a technique, PIVOT, that automatically learns API-device correlations of FIC issues from existing Android apps. PIVOT extracts and prioritizes API-device correlations from a given corpus of Android apps. We evaluated PIVOT with popular Android apps on Google Play. Evaluation results show that PIVOT can effectively prioritize valid API-device correlations for app corpora collected at different time. Leveraging the knowledge in the learned API-device correlations, we further conducted a case study and successfully uncovered ten previously-undetected FIC issues in open-source Android apps.