基于证据k近邻的盲图像隐写分析

N. Guettari, A. Capelle-Laizé, P. Carré
{"title":"基于证据k近邻的盲图像隐写分析","authors":"N. Guettari, A. Capelle-Laizé, P. Carré","doi":"10.1109/ICIP.2016.7532858","DOIUrl":null,"url":null,"abstract":"Blind steganalysis techniques are able to detect the presence of secret messages embedded in digital media files, such as images, video, and audio, with an unknown steganography algorithm. This paper present an image steganalysis method based on Evidential K-Nearest Neighbors (EV-knn). Originality of this work is the use of theoretical framework of Belief functions on different subspaces of features vectors. Classifications obtained in subspaces are combined using specific combination function and to provide classification of a given image (cover or stego). The proposed approach is evaluated with the classical nsf5 steganographic method that hides messages in JPEG images. Compared to Ensemble Classifier steganalysis algorithm, the proposed approach significantly increases the performance of classification.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"47 1","pages":"2742-2746"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Blind image steganalysis based on evidential K-Nearest Neighbors\",\"authors\":\"N. Guettari, A. Capelle-Laizé, P. Carré\",\"doi\":\"10.1109/ICIP.2016.7532858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind steganalysis techniques are able to detect the presence of secret messages embedded in digital media files, such as images, video, and audio, with an unknown steganography algorithm. This paper present an image steganalysis method based on Evidential K-Nearest Neighbors (EV-knn). Originality of this work is the use of theoretical framework of Belief functions on different subspaces of features vectors. Classifications obtained in subspaces are combined using specific combination function and to provide classification of a given image (cover or stego). The proposed approach is evaluated with the classical nsf5 steganographic method that hides messages in JPEG images. Compared to Ensemble Classifier steganalysis algorithm, the proposed approach significantly increases the performance of classification.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"47 1\",\"pages\":\"2742-2746\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

盲隐写分析技术能够使用未知的隐写算法检测嵌入在数字媒体文件(如图像、视频和音频)中的秘密信息的存在。提出了一种基于证据k近邻(EV-knn)的图像隐写算法。本文的创新之处在于在特征向量的不同子空间上使用了信念函数的理论框架。在子空间中获得的分类使用特定的组合函数进行组合,并提供给定图像的分类(覆盖或隐去)。该方法与经典的nsf5隐写方法(隐藏JPEG图像中的消息)进行了比较。与集成分类器隐写算法相比,该方法显著提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind image steganalysis based on evidential K-Nearest Neighbors
Blind steganalysis techniques are able to detect the presence of secret messages embedded in digital media files, such as images, video, and audio, with an unknown steganography algorithm. This paper present an image steganalysis method based on Evidential K-Nearest Neighbors (EV-knn). Originality of this work is the use of theoretical framework of Belief functions on different subspaces of features vectors. Classifications obtained in subspaces are combined using specific combination function and to provide classification of a given image (cover or stego). The proposed approach is evaluated with the classical nsf5 steganographic method that hides messages in JPEG images. Compared to Ensemble Classifier steganalysis algorithm, the proposed approach significantly increases the performance of classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信