线性缩放库仑相互作用在多小波基础上,一个并行实现

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
S. R. Jensen, J. Jusélius, A. Durdek, T. Flå, P. Wind, L. Frediani
{"title":"线性缩放库仑相互作用在多小波基础上,一个并行实现","authors":"S. R. Jensen, J. Jusélius, A. Durdek, T. Flå, P. Wind, L. Frediani","doi":"10.1142/S1793962314410037","DOIUrl":null,"url":null,"abstract":"We present a parallel and linear scaling implementation of the calculation of the electrostatic potential arising from an arbitrary charge distribution. Our approach is making use of the multi-resolution basis of multiwavelets. The potential is obtained as the direct solution of the Poisson equation in its Green's function integral form. In the multiwavelet basis, the formally non local integral operator decays rapidly to negligible values away from the main diagonal, yielding an effectively banded structure where the bandwidth is only dictated by the requested accuracy. This sparse operator structure has been exploited to achieve linear scaling and parallel algorithms. Parallelization has been achieved both through the shared memory (OpenMP) and the message passing interface (MPI) paradigm. Our implementation has been tested by computing the electrostatic potential of the electronic density of long-chain alkanes and diamond fragments showing (sub)linear scaling with the system size and efficent parallelization.","PeriodicalId":45889,"journal":{"name":"International Journal of Modeling Simulation and Scientific Computing","volume":"22 1","pages":"1441003"},"PeriodicalIF":0.9000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Linear scaling Coulomb interaction in the multiwavelet basis, a parallel implementation\",\"authors\":\"S. R. Jensen, J. Jusélius, A. Durdek, T. Flå, P. Wind, L. Frediani\",\"doi\":\"10.1142/S1793962314410037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a parallel and linear scaling implementation of the calculation of the electrostatic potential arising from an arbitrary charge distribution. Our approach is making use of the multi-resolution basis of multiwavelets. The potential is obtained as the direct solution of the Poisson equation in its Green's function integral form. In the multiwavelet basis, the formally non local integral operator decays rapidly to negligible values away from the main diagonal, yielding an effectively banded structure where the bandwidth is only dictated by the requested accuracy. This sparse operator structure has been exploited to achieve linear scaling and parallel algorithms. Parallelization has been achieved both through the shared memory (OpenMP) and the message passing interface (MPI) paradigm. Our implementation has been tested by computing the electrostatic potential of the electronic density of long-chain alkanes and diamond fragments showing (sub)linear scaling with the system size and efficent parallelization.\",\"PeriodicalId\":45889,\"journal\":{\"name\":\"International Journal of Modeling Simulation and Scientific Computing\",\"volume\":\"22 1\",\"pages\":\"1441003\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modeling Simulation and Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793962314410037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling Simulation and Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793962314410037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一种平行和线性缩放的方法来计算由任意电荷分布引起的静电势。我们的方法是利用多小波的多分辨率基础。势是泊松方程的格林函数积分形式的直接解。在多小波基中,形式上的非局部积分算子迅速衰减到远离主对角线的可忽略值,产生有效的带状结构,其中带宽仅由所要求的精度决定。这种稀疏算子结构已被用于实现线性缩放和并行算法。通过共享内存(OpenMP)和消息传递接口(MPI)范式实现了并行化。我们的实现已经通过计算长链烷烃和钻石碎片的电子密度的静电势进行了测试,显示出与系统大小和有效并行化的(亚)线性缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear scaling Coulomb interaction in the multiwavelet basis, a parallel implementation
We present a parallel and linear scaling implementation of the calculation of the electrostatic potential arising from an arbitrary charge distribution. Our approach is making use of the multi-resolution basis of multiwavelets. The potential is obtained as the direct solution of the Poisson equation in its Green's function integral form. In the multiwavelet basis, the formally non local integral operator decays rapidly to negligible values away from the main diagonal, yielding an effectively banded structure where the bandwidth is only dictated by the requested accuracy. This sparse operator structure has been exploited to achieve linear scaling and parallel algorithms. Parallelization has been achieved both through the shared memory (OpenMP) and the message passing interface (MPI) paradigm. Our implementation has been tested by computing the electrostatic potential of the electronic density of long-chain alkanes and diamond fragments showing (sub)linear scaling with the system size and efficent parallelization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
16.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信