利用路径优化方法规避了具有排斥矢量型相互作用的PNJL模型中的模型符号问题

A. Ohnishi, Y. Mori, K. Kashiwa
{"title":"利用路径优化方法规避了具有排斥矢量型相互作用的PNJL模型中的模型符号问题","authors":"A. Ohnishi, Y. Mori, K. Kashiwa","doi":"10.22323/1.363.0213","DOIUrl":null,"url":null,"abstract":"We discuss the sign problem in the Polyakov loop extended Nambu--Jona-Lasinio model with repulsive vector-type interaction by using the path optimization method. In this model, both of the Polyakov loop and the vector-type interaction cause the model sign problem, and several prescriptions have been utilized even in the mean field treatment. In the path optimization method, integration variables are complexified and the integration path (manifold) is optimized to evade the sign problem, or equivalently to enhance the average phase factor. Within the homogeneous field ansatz, the path is optimized by using the feedforward neural network. We find that the assumptions adopted in previous works, $\\mathrm{Re}\\,A_8 \\simeq 0$ and $\\mathrm{Re}\\,\\omega \\simeq 0$, can be justified from the Monte-Carlo configurations sampled on the optimized path. We also derive the Euler-Lagrange equation for the optimal path to satisfy. The two optimized paths, the solution of the Euler-Lagrange equation and the variationally optimized path, agree with each other in the region with large statistical weight.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evading the model sign problem in the PNJL model with repulsive vector-type interaction via path optimization\",\"authors\":\"A. Ohnishi, Y. Mori, K. Kashiwa\",\"doi\":\"10.22323/1.363.0213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the sign problem in the Polyakov loop extended Nambu--Jona-Lasinio model with repulsive vector-type interaction by using the path optimization method. In this model, both of the Polyakov loop and the vector-type interaction cause the model sign problem, and several prescriptions have been utilized even in the mean field treatment. In the path optimization method, integration variables are complexified and the integration path (manifold) is optimized to evade the sign problem, or equivalently to enhance the average phase factor. Within the homogeneous field ansatz, the path is optimized by using the feedforward neural network. We find that the assumptions adopted in previous works, $\\\\mathrm{Re}\\\\,A_8 \\\\simeq 0$ and $\\\\mathrm{Re}\\\\,\\\\omega \\\\simeq 0$, can be justified from the Monte-Carlo configurations sampled on the optimized path. We also derive the Euler-Lagrange equation for the optimal path to satisfy. The two optimized paths, the solution of the Euler-Lagrange equation and the variationally optimized path, agree with each other in the region with large statistical weight.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用路径优化方法讨论了具有排斥矢量型相互作用的Polyakov环扩展Nambu—Jona-Lasinio模型中的符号问题。在该模型中,Polyakov环和矢量型相互作用都会引起模型符号问题,并且在平均场处理中也使用了几种处方。在路径优化方法中,对积分变量进行复化,对积分路径(流形)进行优化,以避免符号问题,即提高平均相位因子。在均匀场分析范围内,采用前馈神经网络对路径进行优化。我们发现在之前的工作中采用的假设$\mathrm{Re}\,A_8 \simeq 0$和$\mathrm{Re}\,\omega \simeq 0$可以通过在优化路径上采样的蒙特卡罗构型来证明。并推导出最优路径的欧拉-拉格朗日方程。在统计权值较大的区域,Euler-Lagrange方程的解和变分优化路径是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evading the model sign problem in the PNJL model with repulsive vector-type interaction via path optimization
We discuss the sign problem in the Polyakov loop extended Nambu--Jona-Lasinio model with repulsive vector-type interaction by using the path optimization method. In this model, both of the Polyakov loop and the vector-type interaction cause the model sign problem, and several prescriptions have been utilized even in the mean field treatment. In the path optimization method, integration variables are complexified and the integration path (manifold) is optimized to evade the sign problem, or equivalently to enhance the average phase factor. Within the homogeneous field ansatz, the path is optimized by using the feedforward neural network. We find that the assumptions adopted in previous works, $\mathrm{Re}\,A_8 \simeq 0$ and $\mathrm{Re}\,\omega \simeq 0$, can be justified from the Monte-Carlo configurations sampled on the optimized path. We also derive the Euler-Lagrange equation for the optimal path to satisfy. The two optimized paths, the solution of the Euler-Lagrange equation and the variationally optimized path, agree with each other in the region with large statistical weight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信