从口语中学习机器人

IF 4.2 Q2 ROBOTICS
K. Kodur, Manizheh Zand, Maria Kyrarini
{"title":"从口语中学习机器人","authors":"K. Kodur, Manizheh Zand, Maria Kyrarini","doi":"10.1145/3568294.3580053","DOIUrl":null,"url":null,"abstract":"The paper proposes a robot learning framework that empowers a robot to automatically generate a sequence of actions from unstructured spoken language. The robot learning framework was able to distinguish between instructions and unrelated conversations. Data were collected from 25 participants, who were asked to instruct the robot to perform a collaborative cooking task while being interrupted and distracted. The system was able to identify the sequence of instructed actions for a cooking task with an accuracy of of 92.85 ± 3.87%.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"4 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Robot Learning from Spoken Language\",\"authors\":\"K. Kodur, Manizheh Zand, Maria Kyrarini\",\"doi\":\"10.1145/3568294.3580053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a robot learning framework that empowers a robot to automatically generate a sequence of actions from unstructured spoken language. The robot learning framework was able to distinguish between instructions and unrelated conversations. Data were collected from 25 participants, who were asked to instruct the robot to perform a collaborative cooking task while being interrupted and distracted. The system was able to identify the sequence of instructed actions for a cooking task with an accuracy of of 92.85 ± 3.87%.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568294.3580053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568294.3580053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种机器人学习框架,使机器人能够从非结构化的口语中自动生成一系列动作。机器人学习框架能够区分指令和不相关的对话。研究人员从25名参与者那里收集了数据,他们被要求在被打断和分心的情况下指导机器人完成一项协作烹饪任务。该系统能够识别烹饪任务的指示动作序列,准确率为92.85±3.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Robot Learning from Spoken Language
The paper proposes a robot learning framework that empowers a robot to automatically generate a sequence of actions from unstructured spoken language. The robot learning framework was able to distinguish between instructions and unrelated conversations. Data were collected from 25 participants, who were asked to instruct the robot to perform a collaborative cooking task while being interrupted and distracted. The system was able to identify the sequence of instructed actions for a cooking task with an accuracy of of 92.85 ± 3.87%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Human-Robot Interaction
ACM Transactions on Human-Robot Interaction Computer Science-Artificial Intelligence
CiteScore
7.70
自引率
5.90%
发文量
65
期刊介绍: ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain. THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信