聚合物纳米复合材料的光催化疲劳

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. V. Orekhov, Yurii M. Artem’ev, G. Pavilaynen
{"title":"聚合物纳米复合材料的光催化疲劳","authors":"A. V. Orekhov, Yurii M. Artem’ev, G. Pavilaynen","doi":"10.21638/11701/spbu10.2022.308","DOIUrl":null,"url":null,"abstract":"We discuss the change in mechanical properties of polymeric nanocomposites with photoactive components caused by solar range lighting. Given degradation photoassisted processes are related with the semiconductor nature of component photoactive particles as photocatalysts. Semiconductor particles can be transferred into electron-exited states due to light quanta absorption. One possible way out from these states is through redox electrochemical reactions with neighbor molecules. The redox reactions can produce transformations of polymer structure and composition, decreasing its mechanical strength. The term “photoca-talytic fatigue” denotes a special case of the photo-degradation of polymers resulted only in a change in the strength value of the material. We review not numerous published data on investigations of changes in mechanical properties of polymeric nanocomposite, and mainly in the strength value, arisen from solar range light irradiation. We compare the degradation processes of polymeric nanocomposites containing photoactive components and of the high-cycle fatigue in metals. Likewise, we propose the use of equations of metal high-cycle fatigue curves as a possible approach to mathematical modeling of the processes of polymeric nanocomposites photodegradation. In this, the number of cycles is substitution with exposure time. Especially, the high-cycle fatigue curve equation for the samples with stress concentrations is considered. The experimental parameters of the “photocatalytic fatigue” equation for polymer nanocomposites containing photoactive components are calculated using the Monte Carlo method.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"13 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic fatigue of the polymer nanocomposites\",\"authors\":\"A. V. Orekhov, Yurii M. Artem’ev, G. Pavilaynen\",\"doi\":\"10.21638/11701/spbu10.2022.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the change in mechanical properties of polymeric nanocomposites with photoactive components caused by solar range lighting. Given degradation photoassisted processes are related with the semiconductor nature of component photoactive particles as photocatalysts. Semiconductor particles can be transferred into electron-exited states due to light quanta absorption. One possible way out from these states is through redox electrochemical reactions with neighbor molecules. The redox reactions can produce transformations of polymer structure and composition, decreasing its mechanical strength. The term “photoca-talytic fatigue” denotes a special case of the photo-degradation of polymers resulted only in a change in the strength value of the material. We review not numerous published data on investigations of changes in mechanical properties of polymeric nanocomposite, and mainly in the strength value, arisen from solar range light irradiation. We compare the degradation processes of polymeric nanocomposites containing photoactive components and of the high-cycle fatigue in metals. Likewise, we propose the use of equations of metal high-cycle fatigue curves as a possible approach to mathematical modeling of the processes of polymeric nanocomposites photodegradation. In this, the number of cycles is substitution with exposure time. Especially, the high-cycle fatigue curve equation for the samples with stress concentrations is considered. The experimental parameters of the “photocatalytic fatigue” equation for polymer nanocomposites containing photoactive components are calculated using the Monte Carlo method.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2022.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2022.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了日光照射对具有光活性成分的聚合物纳米复合材料力学性能的影响。给定的降解光辅助过程与作为光催化剂的组分光活性粒子的半导体性质有关。由于光量子的吸收,半导体粒子可以转移到电子激发态。摆脱这些状态的一种可能的方法是通过与邻近分子的氧化还原电化学反应。氧化还原反应会使聚合物的结构和组成发生变化,降低其机械强度。术语“光催化疲劳”是指聚合物的光降解只导致材料强度值变化的一种特殊情况。我们回顾了许多已发表的关于高分子纳米复合材料力学性能变化的研究数据,主要是在强度值方面,这些变化是由太阳范围的光照射引起的。我们比较了含有光活性成分的聚合物纳米复合材料的降解过程和金属的高周疲劳。同样,我们提出使用金属高周疲劳曲线方程作为聚合物纳米复合材料光降解过程数学建模的可能方法。在这种情况下,循环次数与曝光时间成代换关系。特别考虑了具有应力集中的试样的高周疲劳曲线方程。采用蒙特卡罗方法计算了含光活性组分聚合物纳米复合材料“光催化疲劳”方程的实验参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photocatalytic fatigue of the polymer nanocomposites
We discuss the change in mechanical properties of polymeric nanocomposites with photoactive components caused by solar range lighting. Given degradation photoassisted processes are related with the semiconductor nature of component photoactive particles as photocatalysts. Semiconductor particles can be transferred into electron-exited states due to light quanta absorption. One possible way out from these states is through redox electrochemical reactions with neighbor molecules. The redox reactions can produce transformations of polymer structure and composition, decreasing its mechanical strength. The term “photoca-talytic fatigue” denotes a special case of the photo-degradation of polymers resulted only in a change in the strength value of the material. We review not numerous published data on investigations of changes in mechanical properties of polymeric nanocomposite, and mainly in the strength value, arisen from solar range light irradiation. We compare the degradation processes of polymeric nanocomposites containing photoactive components and of the high-cycle fatigue in metals. Likewise, we propose the use of equations of metal high-cycle fatigue curves as a possible approach to mathematical modeling of the processes of polymeric nanocomposites photodegradation. In this, the number of cycles is substitution with exposure time. Especially, the high-cycle fatigue curve equation for the samples with stress concentrations is considered. The experimental parameters of the “photocatalytic fatigue” equation for polymer nanocomposites containing photoactive components are calculated using the Monte Carlo method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信