随机波动下的加速股票回购

Q3 Mathematics
N. Krishnan, R. Sircar
{"title":"随机波动下的加速股票回购","authors":"N. Krishnan, R. Sircar","doi":"10.1080/1350486X.2023.2210290","DOIUrl":null,"url":null,"abstract":"Accelerated share repurchases (ASRs) are a type of stock buyback wherein the repurchasing firm contracts a financial intermediary to acquire the shares on its behalf. The intermediary purchases the shares from the open market and is compensated by the firm according to the average of the stock price over the repurchasing interval, whose end can be chosen by the intermediary. Hence, the intermediary needs to decide both how to minimize the cost of acquiring the shares, and when to exercise its contract to maximize its payment. Studies of ASRs typically assume a constant volatility, but the longer time horizon of ASRs, on the order of months, indicates that the variation of the volatility should be considered. We analyze the optimal strategy of the intermediary within the continuous-time framework of the Heston model for the evolution of the stock price and volatility, which is described by a free-boundary problem which we derive here. To solve this system numerically, we make use of deep learning. Through simulations, we find that the intermediary can acquire shares at lower cost and lower risk if it takes into account the stochasticity of the volatility.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Share Repurchases Under Stochastic Volatility\",\"authors\":\"N. Krishnan, R. Sircar\",\"doi\":\"10.1080/1350486X.2023.2210290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerated share repurchases (ASRs) are a type of stock buyback wherein the repurchasing firm contracts a financial intermediary to acquire the shares on its behalf. The intermediary purchases the shares from the open market and is compensated by the firm according to the average of the stock price over the repurchasing interval, whose end can be chosen by the intermediary. Hence, the intermediary needs to decide both how to minimize the cost of acquiring the shares, and when to exercise its contract to maximize its payment. Studies of ASRs typically assume a constant volatility, but the longer time horizon of ASRs, on the order of months, indicates that the variation of the volatility should be considered. We analyze the optimal strategy of the intermediary within the continuous-time framework of the Heston model for the evolution of the stock price and volatility, which is described by a free-boundary problem which we derive here. To solve this system numerically, we make use of deep learning. Through simulations, we find that the intermediary can acquire shares at lower cost and lower risk if it takes into account the stochasticity of the volatility.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2023.2210290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2023.2210290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

加速股票回购(ASRs)是一种股票回购,其中回购公司与金融中介机构签订合同,代表其收购股票。中间商从公开市场购买股票,公司根据回购间隔内股票价格的平均值对中间商进行补偿,回购间隔的结束时间由中间商选择。因此,中介需要决定如何使获得股份的成本最小化,以及何时行使其合同以使其支付最大化。对asr的研究通常假设一个恒定的波动率,但asr的时间跨度较长,以月为单位,这表明应该考虑波动率的变化。我们在连续时间的赫斯顿模型框架内分析了中介机构的最优策略,以股票价格和波动率的演变,这是由我们导出的一个自由边界问题来描述的。为了对这个系统进行数值求解,我们使用了深度学习。通过模拟,我们发现如果考虑波动性的随机性,中介可以以较低的成本和较低的风险获得股票。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Share Repurchases Under Stochastic Volatility
Accelerated share repurchases (ASRs) are a type of stock buyback wherein the repurchasing firm contracts a financial intermediary to acquire the shares on its behalf. The intermediary purchases the shares from the open market and is compensated by the firm according to the average of the stock price over the repurchasing interval, whose end can be chosen by the intermediary. Hence, the intermediary needs to decide both how to minimize the cost of acquiring the shares, and when to exercise its contract to maximize its payment. Studies of ASRs typically assume a constant volatility, but the longer time horizon of ASRs, on the order of months, indicates that the variation of the volatility should be considered. We analyze the optimal strategy of the intermediary within the continuous-time framework of the Heston model for the evolution of the stock price and volatility, which is described by a free-boundary problem which we derive here. To solve this system numerically, we make use of deep learning. Through simulations, we find that the intermediary can acquire shares at lower cost and lower risk if it takes into account the stochasticity of the volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信