Yibin Tang, Xufei Li, Ying Chen, Y. Zhong, A. Jiang, Xiaofeng Liu
{"title":"注意缺陷多动障碍的L2,1-范数线性判别分析","authors":"Yibin Tang, Xufei Li, Ying Chen, Y. Zhong, A. Jiang, Xiaofeng Liu","doi":"10.1109/ICASSP40776.2020.9053391","DOIUrl":null,"url":null,"abstract":"Attention Deficit Hyperactivity Disorder (ADHD) is a high incidence of neurobehavioral disease in school-age children. Its neurobiological classification is meaningful for clinicians. The existing ADHD classification methods suffer from two problems, i.e., insufficient data and noise disturbance. Here, a high-accuracy classification method is proposed, which uses brain Functional Connectivity (FC) as material for ADHD feature analysis. In detail, we introduce a binary hypothesis testing framework as the classification outline to cope with insufficient data of ADHD database. Under binary hypotheses, the FCs of test data are allowed to use for training and thus affect the subspace learning of training data. To overcome noise disturbance, an l2,1-norm LDA model is adopted to robustly learn ADHD features in subspaces. The subspace energies of training data under binary hypotheses are then calculated, and an energy-based comparison is finally performed to identify ADHD individuals. On the platform of ADHD-200 database, the experiments show our method outperforms other state-of-the-art methods with the significant average accuracy of 97.6%.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"108 1","pages":"1170-1174"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-Accuracy Classification of Attention Deficit Hyperactivity Disorder with L2,1-Norm Linear Discriminant Analysis\",\"authors\":\"Yibin Tang, Xufei Li, Ying Chen, Y. Zhong, A. Jiang, Xiaofeng Liu\",\"doi\":\"10.1109/ICASSP40776.2020.9053391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention Deficit Hyperactivity Disorder (ADHD) is a high incidence of neurobehavioral disease in school-age children. Its neurobiological classification is meaningful for clinicians. The existing ADHD classification methods suffer from two problems, i.e., insufficient data and noise disturbance. Here, a high-accuracy classification method is proposed, which uses brain Functional Connectivity (FC) as material for ADHD feature analysis. In detail, we introduce a binary hypothesis testing framework as the classification outline to cope with insufficient data of ADHD database. Under binary hypotheses, the FCs of test data are allowed to use for training and thus affect the subspace learning of training data. To overcome noise disturbance, an l2,1-norm LDA model is adopted to robustly learn ADHD features in subspaces. The subspace energies of training data under binary hypotheses are then calculated, and an energy-based comparison is finally performed to identify ADHD individuals. On the platform of ADHD-200 database, the experiments show our method outperforms other state-of-the-art methods with the significant average accuracy of 97.6%.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"108 1\",\"pages\":\"1170-1174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Accuracy Classification of Attention Deficit Hyperactivity Disorder with L2,1-Norm Linear Discriminant Analysis
Attention Deficit Hyperactivity Disorder (ADHD) is a high incidence of neurobehavioral disease in school-age children. Its neurobiological classification is meaningful for clinicians. The existing ADHD classification methods suffer from two problems, i.e., insufficient data and noise disturbance. Here, a high-accuracy classification method is proposed, which uses brain Functional Connectivity (FC) as material for ADHD feature analysis. In detail, we introduce a binary hypothesis testing framework as the classification outline to cope with insufficient data of ADHD database. Under binary hypotheses, the FCs of test data are allowed to use for training and thus affect the subspace learning of training data. To overcome noise disturbance, an l2,1-norm LDA model is adopted to robustly learn ADHD features in subspaces. The subspace energies of training data under binary hypotheses are then calculated, and an energy-based comparison is finally performed to identify ADHD individuals. On the platform of ADHD-200 database, the experiments show our method outperforms other state-of-the-art methods with the significant average accuracy of 97.6%.