基于头部运动夹带的情侣行为特征预测模型

Bo Xiao, P. Georgiou, Brian R. Baucom, Shrikanth S. Narayanan
{"title":"基于头部运动夹带的情侣行为特征预测模型","authors":"Bo Xiao, P. Georgiou, Brian R. Baucom, Shrikanth S. Narayanan","doi":"10.1109/ACII.2015.7344556","DOIUrl":null,"url":null,"abstract":"Our work examines the link between head motion entrainment of interacting couples and human expert's judgment on certain overall behavioral characteristics (e.g., Blame patterns). We employ a data-driven model that clusters head motion in an unsupervised manner into elementary types called kinemes. We propose three groups of similarity measures based on Kullback-Leibler divergence to model entrainment. We find that the divergence of the (joint) distribution of kinemes yields consistent and significant correlation with target behavior characteristics. The divergence of the conditional distribution of kinemes is shown to predict the polarity of the behavioral characteristics. We partly explain the strong correlations via associating the conditional distributions with the prominent behavioral implications of their respective associated kinemes. These results show the possibility of inferring human behavioral characteristics through the modeling of dyadic head motion entrainment.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"146 1","pages":"91-97"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modeling head motion entrainment for prediction of couples' behavioral characteristics\",\"authors\":\"Bo Xiao, P. Georgiou, Brian R. Baucom, Shrikanth S. Narayanan\",\"doi\":\"10.1109/ACII.2015.7344556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our work examines the link between head motion entrainment of interacting couples and human expert's judgment on certain overall behavioral characteristics (e.g., Blame patterns). We employ a data-driven model that clusters head motion in an unsupervised manner into elementary types called kinemes. We propose three groups of similarity measures based on Kullback-Leibler divergence to model entrainment. We find that the divergence of the (joint) distribution of kinemes yields consistent and significant correlation with target behavior characteristics. The divergence of the conditional distribution of kinemes is shown to predict the polarity of the behavioral characteristics. We partly explain the strong correlations via associating the conditional distributions with the prominent behavioral implications of their respective associated kinemes. These results show the possibility of inferring human behavioral characteristics through the modeling of dyadic head motion entrainment.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"146 1\",\"pages\":\"91-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们的工作考察了互动夫妻的头部运动与人类专家对某些整体行为特征(例如,责备模式)的判断之间的联系。我们采用了一种数据驱动的模型,该模型以一种无监督的方式将头部运动聚类为称为运动学的基本类型。我们提出了三组基于Kullback-Leibler散度的相似性度量来模拟夹带。我们发现运动学(关节)分布的散度与目标行为特征具有一致且显著的相关性。运动学条件分布的散度可以用来预测行为特征的极性。我们通过将条件分布与其各自相关运动学的突出行为含义联系起来,部分解释了这种强相关性。这些结果显示了通过二元头部运动夹带建模来推断人类行为特征的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling head motion entrainment for prediction of couples' behavioral characteristics
Our work examines the link between head motion entrainment of interacting couples and human expert's judgment on certain overall behavioral characteristics (e.g., Blame patterns). We employ a data-driven model that clusters head motion in an unsupervised manner into elementary types called kinemes. We propose three groups of similarity measures based on Kullback-Leibler divergence to model entrainment. We find that the divergence of the (joint) distribution of kinemes yields consistent and significant correlation with target behavior characteristics. The divergence of the conditional distribution of kinemes is shown to predict the polarity of the behavioral characteristics. We partly explain the strong correlations via associating the conditional distributions with the prominent behavioral implications of their respective associated kinemes. These results show the possibility of inferring human behavioral characteristics through the modeling of dyadic head motion entrainment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信