波长选择性硅雪崩光电二极管与控制宽光谱增益集成光子捕获微结构

Amita Rawat, Ahasan Ahamed, Lisa N. Mcphillips, Busra Ergul-Yilmaz, Cesar Bartolo-Perez, Shih-Yuan Wang, M. Islam
{"title":"波长选择性硅雪崩光电二极管与控制宽光谱增益集成光子捕获微结构","authors":"Amita Rawat, Ahasan Ahamed, Lisa N. Mcphillips, Busra Ergul-Yilmaz, Cesar Bartolo-Perez, Shih-Yuan Wang, M. Islam","doi":"10.1117/12.2637146","DOIUrl":null,"url":null,"abstract":"Silicon avalanche photodiodes (Si-APD) are widely explored due to their high sensitivity, rapid response time, high quantum efficiency, intrinsic multiplication gain, and low signal-to-noise ratio. We present an experimental demonstration of a wavelength selective APD stack epitaxially grown in two different doping orders:–1) N-on-P and 2) P-on-N.We present a performance comparison between N-on-P and P-on-N based on the quantum external efficiency (EQE), Ion/Ioff ratio, and the reverse biased dark state leakage current. By reversing the doping from P-on-N to N-on-P, we show a 40% increase in the EQE. By introducing the photon-trapping hole array we show a 60% improvement in the EQE. We have utilized a low temperature (450oC) forming gas (5% H2 and 95% N2) annealing process to passivate the surface states and show a dark state leakage current improvement from sub- 10nA to sub-1nA current range. The proposed devices are complementary metal oxide semiconductor process compatible and can enable ‘detectors-on-chip’ technology for numerous applications such as internet-of-things, data communication, biomedical imaging, high-speed cloud computing, remote sensing, as well as single-photon detection.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"1 1","pages":"1220005 - 1220005-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wavelength selective silicon avalanche photodiodes with controlled wide spectral gain by integrating photon-trapping microstructures\",\"authors\":\"Amita Rawat, Ahasan Ahamed, Lisa N. Mcphillips, Busra Ergul-Yilmaz, Cesar Bartolo-Perez, Shih-Yuan Wang, M. Islam\",\"doi\":\"10.1117/12.2637146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon avalanche photodiodes (Si-APD) are widely explored due to their high sensitivity, rapid response time, high quantum efficiency, intrinsic multiplication gain, and low signal-to-noise ratio. We present an experimental demonstration of a wavelength selective APD stack epitaxially grown in two different doping orders:–1) N-on-P and 2) P-on-N.We present a performance comparison between N-on-P and P-on-N based on the quantum external efficiency (EQE), Ion/Ioff ratio, and the reverse biased dark state leakage current. By reversing the doping from P-on-N to N-on-P, we show a 40% increase in the EQE. By introducing the photon-trapping hole array we show a 60% improvement in the EQE. We have utilized a low temperature (450oC) forming gas (5% H2 and 95% N2) annealing process to passivate the surface states and show a dark state leakage current improvement from sub- 10nA to sub-1nA current range. The proposed devices are complementary metal oxide semiconductor process compatible and can enable ‘detectors-on-chip’ technology for numerous applications such as internet-of-things, data communication, biomedical imaging, high-speed cloud computing, remote sensing, as well as single-photon detection.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"1 1\",\"pages\":\"1220005 - 1220005-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2637146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2637146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

硅雪崩光电二极管(Si-APD)以其高灵敏度、快速响应时间、高量子效率、固有倍增增益和低信噪比等优点得到了广泛的研究。我们提出了一个波长选择性APD堆栈外延生长在两种不同的掺杂顺序:- N-on-P和2)P-on-N的实验证明。我们基于量子外效率(EQE)、离子/ off比和反向偏置暗态漏电流对N-on-P和P-on-N进行了性能比较。通过从P-on-N到N-on-P的反向掺杂,我们发现EQE增加了40%。通过引入光子捕获空穴阵列,EQE性能提高了60%。我们利用低温(450℃)形成气体(5% H2和95% N2)退火工艺钝化表面状态,并显示出从低于10nA到低于1na电流范围内暗态泄漏电流的改善。所提出的器件是互补金属氧化物半导体工艺兼容的,可以使“片上探测器”技术用于物联网、数据通信、生物医学成像、高速云计算、遥感以及单光子检测等众多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelength selective silicon avalanche photodiodes with controlled wide spectral gain by integrating photon-trapping microstructures
Silicon avalanche photodiodes (Si-APD) are widely explored due to their high sensitivity, rapid response time, high quantum efficiency, intrinsic multiplication gain, and low signal-to-noise ratio. We present an experimental demonstration of a wavelength selective APD stack epitaxially grown in two different doping orders:–1) N-on-P and 2) P-on-N.We present a performance comparison between N-on-P and P-on-N based on the quantum external efficiency (EQE), Ion/Ioff ratio, and the reverse biased dark state leakage current. By reversing the doping from P-on-N to N-on-P, we show a 40% increase in the EQE. By introducing the photon-trapping hole array we show a 60% improvement in the EQE. We have utilized a low temperature (450oC) forming gas (5% H2 and 95% N2) annealing process to passivate the surface states and show a dark state leakage current improvement from sub- 10nA to sub-1nA current range. The proposed devices are complementary metal oxide semiconductor process compatible and can enable ‘detectors-on-chip’ technology for numerous applications such as internet-of-things, data communication, biomedical imaging, high-speed cloud computing, remote sensing, as well as single-photon detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信