使用核平滑的统计时序分析

J. Wong, A. Davoodi, Vishal Khandelwal, Ankur Srivastava, M. Potkonjak
{"title":"使用核平滑的统计时序分析","authors":"J. Wong, A. Davoodi, Vishal Khandelwal, Ankur Srivastava, M. Potkonjak","doi":"10.1109/ICCD.2007.4601886","DOIUrl":null,"url":null,"abstract":"We have developed a new statistical timing analysis approach that does not impose any assumptions on the nature of manufacturing variability and takes into account an arbitrary model of spatial correlation as well as all types of functional correlations (e.g. reconvergence-based correlations). The starting point for statistical timing analysis is small scale Monte Carlo (MC) simulation. In order to speed-up the MC simulation process we use stratified balanced sampling and postprocessing of the simulation data using non-parametric kernel estimation. The MC simulation and the statistical analysis procedure are interleaved with the calculation of the critical paths. In order to speed up simulation, we identify and simulate only gates relevant for calculation of the clock cycle time. The application of statistical techniques enable not only accurate statistical timing analysis, but also stability and scalability analysis. The approach is evaluated using MCNC benchmarks and yields more than six orders of magnitude speed improvement compared with the standard MC simulation.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"13 1","pages":"97-102"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Statistical timing analysis using Kernel smoothing\",\"authors\":\"J. Wong, A. Davoodi, Vishal Khandelwal, Ankur Srivastava, M. Potkonjak\",\"doi\":\"10.1109/ICCD.2007.4601886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a new statistical timing analysis approach that does not impose any assumptions on the nature of manufacturing variability and takes into account an arbitrary model of spatial correlation as well as all types of functional correlations (e.g. reconvergence-based correlations). The starting point for statistical timing analysis is small scale Monte Carlo (MC) simulation. In order to speed-up the MC simulation process we use stratified balanced sampling and postprocessing of the simulation data using non-parametric kernel estimation. The MC simulation and the statistical analysis procedure are interleaved with the calculation of the critical paths. In order to speed up simulation, we identify and simulate only gates relevant for calculation of the clock cycle time. The application of statistical techniques enable not only accurate statistical timing analysis, but also stability and scalability analysis. The approach is evaluated using MCNC benchmarks and yields more than six orders of magnitude speed improvement compared with the standard MC simulation.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"13 1\",\"pages\":\"97-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们开发了一种新的统计时间分析方法,该方法不对制造变异性的性质施加任何假设,并考虑了任意的空间相关性模型以及所有类型的功能相关性(例如基于再收敛的相关性)。统计时序分析的起点是小尺度蒙特卡罗(MC)模拟。为了加快MC模拟过程,我们采用分层均衡采样和非参数核估计对模拟数据进行后处理。MC模拟和统计分析过程与关键路径的计算交织在一起。为了加快仿真速度,我们只识别和模拟与时钟周期时间计算相关的门。统计技术的应用不仅可以实现准确的统计时序分析,还可以进行稳定性和可扩展性分析。该方法使用MCNC基准测试进行了评估,与标准MC模拟相比,速度提高了6个数量级以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical timing analysis using Kernel smoothing
We have developed a new statistical timing analysis approach that does not impose any assumptions on the nature of manufacturing variability and takes into account an arbitrary model of spatial correlation as well as all types of functional correlations (e.g. reconvergence-based correlations). The starting point for statistical timing analysis is small scale Monte Carlo (MC) simulation. In order to speed-up the MC simulation process we use stratified balanced sampling and postprocessing of the simulation data using non-parametric kernel estimation. The MC simulation and the statistical analysis procedure are interleaved with the calculation of the critical paths. In order to speed up simulation, we identify and simulate only gates relevant for calculation of the clock cycle time. The application of statistical techniques enable not only accurate statistical timing analysis, but also stability and scalability analysis. The approach is evaluated using MCNC benchmarks and yields more than six orders of magnitude speed improvement compared with the standard MC simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信