参数化集盖和标签盖的逼近硬度:纠错码的阈值图

S. KarthikC., I. Navon
{"title":"参数化集盖和标签盖的逼近硬度:纠错码的阈值图","authors":"S. KarthikC., I. Navon","doi":"10.1137/1.9781611976496.24","DOIUrl":null,"url":null,"abstract":"In the $(k,h)$-SetCover problem, we are given a collection $\\mathcal{S}$ of sets over a universe $U$, and the goal is to distinguish between the case that $\\mathcal{S}$ contains $k$ sets which cover $U$, from the case that at least $h$ sets in $\\mathcal{S}$ are needed to cover $U$. Lin (ICALP'19) recently showed a gap creating reduction from the $(k,k+1)$-SetCover problem on universe of size $O_k(\\log |\\mathcal{S}|)$ to the $\\left(k,\\sqrt[k]{\\frac{\\log|\\mathcal{S}|}{\\log\\log |\\mathcal{S}|}}\\cdot k\\right)$-SetCover problem on universe of size $|\\mathcal{S}|$. In this paper, we prove a more scalable version of his result: given any error correcting code $C$ over alphabet $[q]$, rate $\\rho$, and relative distance $\\delta$, we use $C$ to create a reduction from the $(k,k+1)$-SetCover problem on universe $U$ to the $\\left(k,\\sqrt[2k]{\\frac{2}{1-\\delta}}\\right)$-SetCover problem on universe of size $\\frac{\\log|\\mathcal{S}|}{\\rho}\\cdot|U|^{q^k}$. \nLin established his result by composing the input SetCover instance (that has no gap) with a special threshold graph constructed from extremal combinatorial object called universal sets, resulting in a final SetCover instance with gap. Our reduction follows along the exact same lines, except that we generate the threshold graphs specified by Lin simply using the basic properties of the error correcting code $C$. \nWe use the same threshold graphs mentioned above to prove inapproximability results, under W[1]$\\neq$FPT and ETH, for the $k$-MaxCover problem introduced by Chalermsook et al. (SICOMP'20). Our inapproximaiblity results match the bounds obtained by Karthik et al. (JACM'19), although their proof framework is very different, and involves generalization of the distributed PCP framework. Prior to this work, it was not clear how to adopt the proof strategy of Lin to prove inapproximability results for $k$-MaxCover.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"50 1","pages":"210-223"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On Hardness of Approximation of Parameterized Set Cover and Label Cover: Threshold Graphs from Error Correcting Codes\",\"authors\":\"S. KarthikC., I. Navon\",\"doi\":\"10.1137/1.9781611976496.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the $(k,h)$-SetCover problem, we are given a collection $\\\\mathcal{S}$ of sets over a universe $U$, and the goal is to distinguish between the case that $\\\\mathcal{S}$ contains $k$ sets which cover $U$, from the case that at least $h$ sets in $\\\\mathcal{S}$ are needed to cover $U$. Lin (ICALP'19) recently showed a gap creating reduction from the $(k,k+1)$-SetCover problem on universe of size $O_k(\\\\log |\\\\mathcal{S}|)$ to the $\\\\left(k,\\\\sqrt[k]{\\\\frac{\\\\log|\\\\mathcal{S}|}{\\\\log\\\\log |\\\\mathcal{S}|}}\\\\cdot k\\\\right)$-SetCover problem on universe of size $|\\\\mathcal{S}|$. In this paper, we prove a more scalable version of his result: given any error correcting code $C$ over alphabet $[q]$, rate $\\\\rho$, and relative distance $\\\\delta$, we use $C$ to create a reduction from the $(k,k+1)$-SetCover problem on universe $U$ to the $\\\\left(k,\\\\sqrt[2k]{\\\\frac{2}{1-\\\\delta}}\\\\right)$-SetCover problem on universe of size $\\\\frac{\\\\log|\\\\mathcal{S}|}{\\\\rho}\\\\cdot|U|^{q^k}$. \\nLin established his result by composing the input SetCover instance (that has no gap) with a special threshold graph constructed from extremal combinatorial object called universal sets, resulting in a final SetCover instance with gap. Our reduction follows along the exact same lines, except that we generate the threshold graphs specified by Lin simply using the basic properties of the error correcting code $C$. \\nWe use the same threshold graphs mentioned above to prove inapproximability results, under W[1]$\\\\neq$FPT and ETH, for the $k$-MaxCover problem introduced by Chalermsook et al. (SICOMP'20). Our inapproximaiblity results match the bounds obtained by Karthik et al. (JACM'19), although their proof framework is very different, and involves generalization of the distributed PCP framework. Prior to this work, it was not clear how to adopt the proof strategy of Lin to prove inapproximability results for $k$-MaxCover.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"50 1\",\"pages\":\"210-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611976496.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976496.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在$(k,h)$ -SetCover问题中,我们给出了$U$宇宙上集合的$\mathcal{S}$集合,目的是区分$\mathcal{S}$包含$k$集合覆盖$U$的情况,与$\mathcal{S}$中至少需要$h$集合覆盖$U$的情况。Lin (ICALP'19)最近展示了从大小为$O_k(\log |\mathcal{S}|)$的宇宙上的$(k,k+1)$ -SetCover问题到大小为$|\mathcal{S}|$的宇宙上的$\left(k,\sqrt[k]{\frac{\log|\mathcal{S}|}{\log\log |\mathcal{S}|}}\cdot k\right)$ -SetCover问题之间产生的差距减少。在本文中,我们证明了他的结果的一个更可扩展的版本:给定任何纠错码$C$超过字母$[q]$,比率$\rho$和相对距离$\delta$,我们使用$C$创建了一个从$U$宇宙的$(k,k+1)$ -SetCover问题到$\left(k,\sqrt[2k]{\frac{2}{1-\delta}}\right)$ -SetCover问题的约简,宇宙的大小为$\frac{\log|\mathcal{S}|}{\rho}\cdot|U|^{q^k}$。Lin通过将输入的SetCover实例(没有间隙)与一个由称为通用集的极值组合对象构造的特殊阈值图组合在一起来建立他的结果,从而产生一个具有间隙的最终SetCover实例。我们的还原遵循完全相同的路线,除了我们仅使用纠错代码$C$的基本属性生成Lin指定的阈值图。对于Chalermsook等人(SICOMP'20)提出的$k$ -MaxCover问题,我们使用上述相同的阈值图来证明W[1] $\neq$ FPT和ETH下的不可逼近性结果。我们的不可近似性结果与Karthik等人(JACM'19)获得的界相匹配,尽管他们的证明框架非常不同,并且涉及分布式PCP框架的泛化。在这项工作之前,如何采用Lin的证明策略来证明$k$ -MaxCover的不可逼近性结果并不清楚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hardness of Approximation of Parameterized Set Cover and Label Cover: Threshold Graphs from Error Correcting Codes
In the $(k,h)$-SetCover problem, we are given a collection $\mathcal{S}$ of sets over a universe $U$, and the goal is to distinguish between the case that $\mathcal{S}$ contains $k$ sets which cover $U$, from the case that at least $h$ sets in $\mathcal{S}$ are needed to cover $U$. Lin (ICALP'19) recently showed a gap creating reduction from the $(k,k+1)$-SetCover problem on universe of size $O_k(\log |\mathcal{S}|)$ to the $\left(k,\sqrt[k]{\frac{\log|\mathcal{S}|}{\log\log |\mathcal{S}|}}\cdot k\right)$-SetCover problem on universe of size $|\mathcal{S}|$. In this paper, we prove a more scalable version of his result: given any error correcting code $C$ over alphabet $[q]$, rate $\rho$, and relative distance $\delta$, we use $C$ to create a reduction from the $(k,k+1)$-SetCover problem on universe $U$ to the $\left(k,\sqrt[2k]{\frac{2}{1-\delta}}\right)$-SetCover problem on universe of size $\frac{\log|\mathcal{S}|}{\rho}\cdot|U|^{q^k}$. Lin established his result by composing the input SetCover instance (that has no gap) with a special threshold graph constructed from extremal combinatorial object called universal sets, resulting in a final SetCover instance with gap. Our reduction follows along the exact same lines, except that we generate the threshold graphs specified by Lin simply using the basic properties of the error correcting code $C$. We use the same threshold graphs mentioned above to prove inapproximability results, under W[1]$\neq$FPT and ETH, for the $k$-MaxCover problem introduced by Chalermsook et al. (SICOMP'20). Our inapproximaiblity results match the bounds obtained by Karthik et al. (JACM'19), although their proof framework is very different, and involves generalization of the distributed PCP framework. Prior to this work, it was not clear how to adopt the proof strategy of Lin to prove inapproximability results for $k$-MaxCover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信