坐标系对横扭耦合振动稳定性分析的影响

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Xin Qian, Yu Fan, Yaguang Wu, Wenjun Wang, Lin Li
{"title":"坐标系对横扭耦合振动稳定性分析的影响","authors":"Xin Qian, Yu Fan, Yaguang Wu, Wenjun Wang, Lin Li","doi":"10.3390/aerospace10080699","DOIUrl":null,"url":null,"abstract":"Stability analysis of lateral–torsional coupled vibration is obligatory for rotating machinery, such as aero-engines. However, the state-of-the-art method may lead to stability misjudgment under different coordinate systems. The cause of this misjudgment has not yet been well explored. The purpose of this paper is to clarify the error source of the stability analysis in a more comprehensive manner. A vertical Jeffcott rotor model including torsion vibration is built, and the Lagrange approach is applied to establish the motion equations. The coordinate transformation matrix is used to transfer the motion equations into the rotating coordinate system, making the coefficients of the motion equation constants. The differences in the unstable speed regions in the two coordinate systems are captured. The limitations of the Floquet theory and Hill’s determinant analysis in the stability estimation of the lateral–torsional coupled vibration are explained. It is found that, for Hill’s method, increasing the number of the harmonic truncation cannot correct the misjudgment, and the matrix truncation is the fundamental error source. The above research provides more accurate theoretical support for the analysis of the lateral–torsional coupling instability of rotors.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"5 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Coordinate Systems on the Stability Analysis of Lateral–Torsional Coupled Vibration\",\"authors\":\"Xin Qian, Yu Fan, Yaguang Wu, Wenjun Wang, Lin Li\",\"doi\":\"10.3390/aerospace10080699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability analysis of lateral–torsional coupled vibration is obligatory for rotating machinery, such as aero-engines. However, the state-of-the-art method may lead to stability misjudgment under different coordinate systems. The cause of this misjudgment has not yet been well explored. The purpose of this paper is to clarify the error source of the stability analysis in a more comprehensive manner. A vertical Jeffcott rotor model including torsion vibration is built, and the Lagrange approach is applied to establish the motion equations. The coordinate transformation matrix is used to transfer the motion equations into the rotating coordinate system, making the coefficients of the motion equation constants. The differences in the unstable speed regions in the two coordinate systems are captured. The limitations of the Floquet theory and Hill’s determinant analysis in the stability estimation of the lateral–torsional coupled vibration are explained. It is found that, for Hill’s method, increasing the number of the harmonic truncation cannot correct the misjudgment, and the matrix truncation is the fundamental error source. The above research provides more accurate theoretical support for the analysis of the lateral–torsional coupling instability of rotors.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10080699\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10080699","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

横向-扭转耦合振动的稳定性分析是航空发动机等旋转机械必须进行的研究。然而,现有的方法在不同的坐标系下可能导致稳定性误判。这种误判的原因还没有得到很好的探讨。本文的目的是更全面地阐明稳定性分析的误差来源。建立了包含扭转振动的垂直Jeffcott转子模型,并应用拉格朗日方法建立了其运动方程。利用坐标变换矩阵将运动方程转化为旋转坐标系,使运动方程的系数为常数。捕获了两种坐标系下不稳定速度区域的差异。说明了Floquet理论和Hill行列式分析在横向-扭转耦合振动稳定性估计中的局限性。研究发现,对于Hill方法,增加谐波截断次数不能纠正误判,矩阵截断是基本误差源。上述研究为转子侧扭耦合失稳分析提供了更为准确的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of Coordinate Systems on the Stability Analysis of Lateral–Torsional Coupled Vibration
Stability analysis of lateral–torsional coupled vibration is obligatory for rotating machinery, such as aero-engines. However, the state-of-the-art method may lead to stability misjudgment under different coordinate systems. The cause of this misjudgment has not yet been well explored. The purpose of this paper is to clarify the error source of the stability analysis in a more comprehensive manner. A vertical Jeffcott rotor model including torsion vibration is built, and the Lagrange approach is applied to establish the motion equations. The coordinate transformation matrix is used to transfer the motion equations into the rotating coordinate system, making the coefficients of the motion equation constants. The differences in the unstable speed regions in the two coordinate systems are captured. The limitations of the Floquet theory and Hill’s determinant analysis in the stability estimation of the lateral–torsional coupled vibration are explained. It is found that, for Hill’s method, increasing the number of the harmonic truncation cannot correct the misjudgment, and the matrix truncation is the fundamental error source. The above research provides more accurate theoretical support for the analysis of the lateral–torsional coupling instability of rotors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信