{"title":"非单调边界条件下弹粘塑性动态接触问题的连续依赖与最优控制","authors":"Xilu Wang, Xiaoliang Cheng","doi":"10.3934/eect.2021064","DOIUrl":null,"url":null,"abstract":"In this paper, we consider continuous dependence and optimal control of a dynamic elastic-viscoplastic contact model with Clarke subdifferential boundary conditions. Since the constitutive law of elastic-viscoplastic materials has an implicit expression of the stress field, the weak form of the model is an evolutionary hemivariational inequality coupled with an integral equation. By providing some equivalent weak formulations, we prove the continuous dependence of the solution on external forces and initial conditions in the weak topologies. Finally, the existence of optimal solutions to a boundary optimal control problem is established.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions\",\"authors\":\"Xilu Wang, Xiaoliang Cheng\",\"doi\":\"10.3934/eect.2021064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider continuous dependence and optimal control of a dynamic elastic-viscoplastic contact model with Clarke subdifferential boundary conditions. Since the constitutive law of elastic-viscoplastic materials has an implicit expression of the stress field, the weak form of the model is an evolutionary hemivariational inequality coupled with an integral equation. By providing some equivalent weak formulations, we prove the continuous dependence of the solution on external forces and initial conditions in the weak topologies. Finally, the existence of optimal solutions to a boundary optimal control problem is established.\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2021064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2021064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions
In this paper, we consider continuous dependence and optimal control of a dynamic elastic-viscoplastic contact model with Clarke subdifferential boundary conditions. Since the constitutive law of elastic-viscoplastic materials has an implicit expression of the stress field, the weak form of the model is an evolutionary hemivariational inequality coupled with an integral equation. By providing some equivalent weak formulations, we prove the continuous dependence of the solution on external forces and initial conditions in the weak topologies. Finally, the existence of optimal solutions to a boundary optimal control problem is established.
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology