内燃机压缩环的摩擦学分析

IF 1 Q4 ENGINEERING, MECHANICAL
Konstantinos Tsatsoulis, A. Zavos, P. Nikolakopoulos
{"title":"内燃机压缩环的摩擦学分析","authors":"Konstantinos Tsatsoulis, A. Zavos, P. Nikolakopoulos","doi":"10.2474/TROL.16.125","DOIUrl":null,"url":null,"abstract":"The influence of operating conditions of the compression rings on the engine power losses affects confoundedly the design of the Internal Combustion Engines (ICEs). Normalized parameters such as Friction Mean Effective Pressure (FMEP) were used to regulate power losses. The purpose of this work was to create a primary control model of the friction mean effective pressure using an automatic control system. This study incorporates the creation of a mixed-hydrodynamic model for the top compression ring in MATLAB computing environment. The load of ring asperities was predicted using Greenwood-Tripp stochastic model. The pressure distribution along the ring face-width was determined using Reynolds equation through finite difference method with the half-Sommerfeld boundary condition for cavitation outlet zone. This was accomplished by finding the maximum ring pressure for a range of engine speeds and lubricant temperatures. Additionally, the computed results concerning the maximum pressure and the PID controlled characteristics are proposed and compared using a cavitation model. Regarding the automatic system, a PID controller was built using SIMULINK. The numerical results showed that FMEP could be the effective parameter in order to control the engine operation and to proof the tribotronics design in an Internal Combustion Engine.","PeriodicalId":23314,"journal":{"name":"Tribology Online","volume":"62 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tribotronic Analysis of Internal Combustion Engine Compression Ring\",\"authors\":\"Konstantinos Tsatsoulis, A. Zavos, P. Nikolakopoulos\",\"doi\":\"10.2474/TROL.16.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of operating conditions of the compression rings on the engine power losses affects confoundedly the design of the Internal Combustion Engines (ICEs). Normalized parameters such as Friction Mean Effective Pressure (FMEP) were used to regulate power losses. The purpose of this work was to create a primary control model of the friction mean effective pressure using an automatic control system. This study incorporates the creation of a mixed-hydrodynamic model for the top compression ring in MATLAB computing environment. The load of ring asperities was predicted using Greenwood-Tripp stochastic model. The pressure distribution along the ring face-width was determined using Reynolds equation through finite difference method with the half-Sommerfeld boundary condition for cavitation outlet zone. This was accomplished by finding the maximum ring pressure for a range of engine speeds and lubricant temperatures. Additionally, the computed results concerning the maximum pressure and the PID controlled characteristics are proposed and compared using a cavitation model. Regarding the automatic system, a PID controller was built using SIMULINK. The numerical results showed that FMEP could be the effective parameter in order to control the engine operation and to proof the tribotronics design in an Internal Combustion Engine.\",\"PeriodicalId\":23314,\"journal\":{\"name\":\"Tribology Online\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2474/TROL.16.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2474/TROL.16.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

压缩环工作状态对发动机功率损失的影响直接影响内燃机的设计。采用摩擦平均有效压力(FMEP)等归一化参数调节功率损耗。本工作的目的是利用自动控制系统建立摩擦平均有效压力的初级控制模型。本研究在MATLAB计算环境下建立了顶压环的混合水动力模型。采用Greenwood-Tripp随机模型对环突载荷进行了预测。在空化出口区半sommerfeld边界条件下,采用雷诺方程,采用有限差分法确定了环面宽度方向的压力分布。这是通过找到发动机转速和润滑油温度范围内的最大环压力来实现的。此外,提出了最大压力和PID控制特性的计算结果,并用空化模型进行了比较。针对自动系统,利用SIMULINK搭建了PID控制器。数值结果表明,FMEP可以作为控制发动机运行和验证内燃机摩擦学设计的有效参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tribotronic Analysis of Internal Combustion Engine Compression Ring
The influence of operating conditions of the compression rings on the engine power losses affects confoundedly the design of the Internal Combustion Engines (ICEs). Normalized parameters such as Friction Mean Effective Pressure (FMEP) were used to regulate power losses. The purpose of this work was to create a primary control model of the friction mean effective pressure using an automatic control system. This study incorporates the creation of a mixed-hydrodynamic model for the top compression ring in MATLAB computing environment. The load of ring asperities was predicted using Greenwood-Tripp stochastic model. The pressure distribution along the ring face-width was determined using Reynolds equation through finite difference method with the half-Sommerfeld boundary condition for cavitation outlet zone. This was accomplished by finding the maximum ring pressure for a range of engine speeds and lubricant temperatures. Additionally, the computed results concerning the maximum pressure and the PID controlled characteristics are proposed and compared using a cavitation model. Regarding the automatic system, a PID controller was built using SIMULINK. The numerical results showed that FMEP could be the effective parameter in order to control the engine operation and to proof the tribotronics design in an Internal Combustion Engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Online
Tribology Online ENGINEERING, MECHANICAL-
CiteScore
1.80
自引率
10.00%
发文量
26
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信