探索不平衡分类问题的数据采样技术

Yu Sui, Xiao-hui Zhang, Jia-jia Huan, Hai-feng Hong
{"title":"探索不平衡分类问题的数据采样技术","authors":"Yu Sui, Xiao-hui Zhang, Jia-jia Huan, Hai-feng Hong","doi":"10.1117/12.2540457","DOIUrl":null,"url":null,"abstract":"The class imbalance problem is one of the key challenges in machine learning and data mining. Imbalanced data can result in the sub-optimal performance of classification models. To address the problem, a variety of data sampling methods have been proposed in previous studies. However, there is no universal solution and it is worth to explore which kind of data sampling technique is more effective in balancing class distribution in terms of the type of data and classifier. In this work, we present an experimental study based on a number of real-world data sets obtained from different disciplines. The goal is to investigate different sampling techniques in terms of the effectiveness of increasing the classification performance in imbalanced data sets. In particular, we study ten sampling methods of different types, including random sampling, clusterbased sampling, ensemble sampling and so on. Besides, the C4.5 decision tree algorithm is used to train the base classifiers and the performance is measured by using precision, G-Measure and Cohen's Kappa statistic.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"104 1","pages":"1119813 - 1119813-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploring data sampling techniques for imbalanced classification problems\",\"authors\":\"Yu Sui, Xiao-hui Zhang, Jia-jia Huan, Hai-feng Hong\",\"doi\":\"10.1117/12.2540457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The class imbalance problem is one of the key challenges in machine learning and data mining. Imbalanced data can result in the sub-optimal performance of classification models. To address the problem, a variety of data sampling methods have been proposed in previous studies. However, there is no universal solution and it is worth to explore which kind of data sampling technique is more effective in balancing class distribution in terms of the type of data and classifier. In this work, we present an experimental study based on a number of real-world data sets obtained from different disciplines. The goal is to investigate different sampling techniques in terms of the effectiveness of increasing the classification performance in imbalanced data sets. In particular, we study ten sampling methods of different types, including random sampling, clusterbased sampling, ensemble sampling and so on. Besides, the C4.5 decision tree algorithm is used to train the base classifiers and the performance is measured by using precision, G-Measure and Cohen's Kappa statistic.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"104 1\",\"pages\":\"1119813 - 1119813-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2540457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

类不平衡问题是机器学习和数据挖掘中的关键挑战之一。数据不平衡会导致分类模型的次优性能。为了解决这个问题,在以往的研究中提出了各种数据采样方法。然而,没有一个通用的解决方案,哪种数据采样技术在数据类型和分类器方面更有效地平衡类分布是值得探索的。在这项工作中,我们提出了一项基于从不同学科获得的许多真实世界数据集的实验研究。我们的目标是研究不同的采样技术在提高不平衡数据集分类性能方面的有效性。特别地,我们研究了十种不同类型的抽样方法,包括随机抽样、基于簇的抽样、集合抽样等。此外,使用C4.5决策树算法训练基分类器,并使用精度、G-Measure和Cohen’s Kappa统计量来衡量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring data sampling techniques for imbalanced classification problems
The class imbalance problem is one of the key challenges in machine learning and data mining. Imbalanced data can result in the sub-optimal performance of classification models. To address the problem, a variety of data sampling methods have been proposed in previous studies. However, there is no universal solution and it is worth to explore which kind of data sampling technique is more effective in balancing class distribution in terms of the type of data and classifier. In this work, we present an experimental study based on a number of real-world data sets obtained from different disciplines. The goal is to investigate different sampling techniques in terms of the effectiveness of increasing the classification performance in imbalanced data sets. In particular, we study ten sampling methods of different types, including random sampling, clusterbased sampling, ensemble sampling and so on. Besides, the C4.5 decision tree algorithm is used to train the base classifiers and the performance is measured by using precision, G-Measure and Cohen's Kappa statistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信