Sandeep Kumar, Jiaxi Ying, José Vinícius de Miranda Cardoso, D. Palomar
{"title":"基于邻接谱先验的二部结构高斯图形建模","authors":"Sandeep Kumar, Jiaxi Ying, José Vinícius de Miranda Cardoso, D. Palomar","doi":"10.1109/IEEECONF44664.2019.9048752","DOIUrl":null,"url":null,"abstract":"Learning a graph with a bipartite structure IS essential for interpretability and identification of the relationships among data in numerous applications including document clustering, network medicine, etc. To learn a bipartite structure is equivalent to a max-cut problem, which is an NP-hard problem. Existing methods employ a two-stage procedure and are computationally demanding as they require solving semi-definite programming. In this paper, we introduce a bipartite graph learning framework lying at the integration of Gaussian graphical models (GGM) and spectral graph theory. The proposed algorithms are provably convergent and practically amenable for large-scale unsupervised graph learning tasks. Numerical experiments demonstrate the effectiveness of the proposed algorithm over existing state-of-the-art methods. An R package containing code for all the experimental results is available at https://cran.r-project.org/package=spectralGraphTopology.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"2 1","pages":"322-326"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bipartite Structured Gaussian Graphical Modeling via Adjacency Spectral Priors\",\"authors\":\"Sandeep Kumar, Jiaxi Ying, José Vinícius de Miranda Cardoso, D. Palomar\",\"doi\":\"10.1109/IEEECONF44664.2019.9048752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning a graph with a bipartite structure IS essential for interpretability and identification of the relationships among data in numerous applications including document clustering, network medicine, etc. To learn a bipartite structure is equivalent to a max-cut problem, which is an NP-hard problem. Existing methods employ a two-stage procedure and are computationally demanding as they require solving semi-definite programming. In this paper, we introduce a bipartite graph learning framework lying at the integration of Gaussian graphical models (GGM) and spectral graph theory. The proposed algorithms are provably convergent and practically amenable for large-scale unsupervised graph learning tasks. Numerical experiments demonstrate the effectiveness of the proposed algorithm over existing state-of-the-art methods. An R package containing code for all the experimental results is available at https://cran.r-project.org/package=spectralGraphTopology.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"2 1\",\"pages\":\"322-326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bipartite Structured Gaussian Graphical Modeling via Adjacency Spectral Priors
Learning a graph with a bipartite structure IS essential for interpretability and identification of the relationships among data in numerous applications including document clustering, network medicine, etc. To learn a bipartite structure is equivalent to a max-cut problem, which is an NP-hard problem. Existing methods employ a two-stage procedure and are computationally demanding as they require solving semi-definite programming. In this paper, we introduce a bipartite graph learning framework lying at the integration of Gaussian graphical models (GGM) and spectral graph theory. The proposed algorithms are provably convergent and practically amenable for large-scale unsupervised graph learning tasks. Numerical experiments demonstrate the effectiveness of the proposed algorithm over existing state-of-the-art methods. An R package containing code for all the experimental results is available at https://cran.r-project.org/package=spectralGraphTopology.