印度尼西亚Ujung Kulon国家公园的高异质性LULC分类:11个指标、随机森林、Sentinel-2 MSI和基于ge的云计算的研究

R. Asy'Ari, H. Taufik, Amalia Umamayse, Aulia Ranti, A. D. Rahmawati, Moh Zulfajrin, Lina Lathifah Nurazizah, Made Chandra Aruna Putra, F. A. Prameswari, Rahmat Pramulya, N. Zamani, Y. Setiawan, A. Sudrajat, Anggodo Anggodo
{"title":"印度尼西亚Ujung Kulon国家公园的高异质性LULC分类:11个指标、随机森林、Sentinel-2 MSI和基于ge的云计算的研究","authors":"R. Asy'Ari, H. Taufik, Amalia Umamayse, Aulia Ranti, A. D. Rahmawati, Moh Zulfajrin, Lina Lathifah Nurazizah, Made Chandra Aruna Putra, F. A. Prameswari, Rahmat Pramulya, N. Zamani, Y. Setiawan, A. Sudrajat, Anggodo Anggodo","doi":"10.52045/jca.v3i2.381","DOIUrl":null,"url":null,"abstract":"The Ujung Kulon National Park (UKNT) is one of the national parks on the island of Java and has an essential role in saving endemic species in Indonesia. As a form of national park conservation effort, the completeness of LULC spatial data is a primary database that is indispensable in determining national park management policies. Therefore, this research was conducted to map the LULC (Land Use - Land Cover) in the forest landscape with high heterogeneity in UKNT. Sentinel-2 MSI (Multispectral Instrument) image data were classified using the Random Forest (RF) classification algorithm and tested using 11 index algorithms. The classification process takes place on a cloud computing-based geospatial platform, Google Earth Engine (GEE). This test resulted in 10 LULC classes; water had the broadest percentage of 45.44%. Meanwhile, the primary forest has an area of 21,868.41 or about 19.53% of the total area of the national park. However, there are some discrepancies in the spatial information generated by this classification process, so it is considered necessary to evaluate the combination of indexes, training data, and classification algorithms to limit the classification area. Therefore, this study is expected to be considered for further research related to LULC in high-heterogeneity landscapes.","PeriodicalId":9663,"journal":{"name":"CELEBES Agricultural","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Heterogeneity LULC Classification in Ujung Kulon National Park, Indonesia: A Study Testing 11 Indices, Random Forest, Sentinel-2 MSI, and GEE-based Cloud Computing\",\"authors\":\"R. Asy'Ari, H. Taufik, Amalia Umamayse, Aulia Ranti, A. D. Rahmawati, Moh Zulfajrin, Lina Lathifah Nurazizah, Made Chandra Aruna Putra, F. A. Prameswari, Rahmat Pramulya, N. Zamani, Y. Setiawan, A. Sudrajat, Anggodo Anggodo\",\"doi\":\"10.52045/jca.v3i2.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ujung Kulon National Park (UKNT) is one of the national parks on the island of Java and has an essential role in saving endemic species in Indonesia. As a form of national park conservation effort, the completeness of LULC spatial data is a primary database that is indispensable in determining national park management policies. Therefore, this research was conducted to map the LULC (Land Use - Land Cover) in the forest landscape with high heterogeneity in UKNT. Sentinel-2 MSI (Multispectral Instrument) image data were classified using the Random Forest (RF) classification algorithm and tested using 11 index algorithms. The classification process takes place on a cloud computing-based geospatial platform, Google Earth Engine (GEE). This test resulted in 10 LULC classes; water had the broadest percentage of 45.44%. Meanwhile, the primary forest has an area of 21,868.41 or about 19.53% of the total area of the national park. However, there are some discrepancies in the spatial information generated by this classification process, so it is considered necessary to evaluate the combination of indexes, training data, and classification algorithms to limit the classification area. Therefore, this study is expected to be considered for further research related to LULC in high-heterogeneity landscapes.\",\"PeriodicalId\":9663,\"journal\":{\"name\":\"CELEBES Agricultural\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CELEBES Agricultural\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52045/jca.v3i2.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CELEBES Agricultural","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52045/jca.v3i2.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Ujung Kulon国家公园(UKNT)是爪哇岛上的国家公园之一,在拯救印度尼西亚特有物种方面发挥着重要作用。作为国家公园保护工作的一种形式,LULC空间数据的完整性是确定国家公园管理政策不可或缺的主要数据库。因此,本研究对英国北部高异质性森林景观的土地利用-土地覆盖(LULC)进行了研究。采用随机森林(Random Forest, RF)分类算法对Sentinel-2多光谱仪(Multispectral Instrument, MSI)图像数据进行分类,并使用11种指标算法进行测试。分类过程在基于云计算的地理空间平台谷歌地球引擎(GEE)上进行。这次测试产生了10个LULC班级;水的比例最大,为45.44%。原始林面积为21868.41,约占国家公园总面积的19.53%。但是,该分类过程产生的空间信息存在一定的差异性,因此需要将指标、训练数据和分类算法结合起来进行评价,以限制分类区域。因此,本研究有望为高非均质性景观中LULC的进一步研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Heterogeneity LULC Classification in Ujung Kulon National Park, Indonesia: A Study Testing 11 Indices, Random Forest, Sentinel-2 MSI, and GEE-based Cloud Computing
The Ujung Kulon National Park (UKNT) is one of the national parks on the island of Java and has an essential role in saving endemic species in Indonesia. As a form of national park conservation effort, the completeness of LULC spatial data is a primary database that is indispensable in determining national park management policies. Therefore, this research was conducted to map the LULC (Land Use - Land Cover) in the forest landscape with high heterogeneity in UKNT. Sentinel-2 MSI (Multispectral Instrument) image data were classified using the Random Forest (RF) classification algorithm and tested using 11 index algorithms. The classification process takes place on a cloud computing-based geospatial platform, Google Earth Engine (GEE). This test resulted in 10 LULC classes; water had the broadest percentage of 45.44%. Meanwhile, the primary forest has an area of 21,868.41 or about 19.53% of the total area of the national park. However, there are some discrepancies in the spatial information generated by this classification process, so it is considered necessary to evaluate the combination of indexes, training data, and classification algorithms to limit the classification area. Therefore, this study is expected to be considered for further research related to LULC in high-heterogeneity landscapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信