由于生物膜的强化:潜在腐蚀的指示器和电能的来源

B. Little, Jason S Lee, R. Ray, Shelton Austin, Justin C. Biffinger
{"title":"由于生物膜的强化:潜在腐蚀的指示器和电能的来源","authors":"B. Little, Jason S Lee, R. Ray, Shelton Austin, Justin C. Biffinger","doi":"10.2174/1874464811306010020","DOIUrl":null,"url":null,"abstract":"Abstract : Ennoblement, a positive shift in corrosion potential, due to biofilm formation is the basis of patents for biofilm monitoring and power generating devices. Ennoblement is a global phenomenon that is routinely cited as a mechanism for microbiologically influenced corrosion of some passive alloys. Increased corrosion is attributed to acceleration of the oxygen reduction reaction via several potential mechanisms that have been debated for decades. Because the phenomenon is predictable and reproducible at specific locations, ennoblement is the basis for patented methods and devices for monitoring biofilm formation and relating ennobled potentials to increased likelihood of corrosion and for evaluating cleaning and biocide treatments. Furthermore, when anodes and cathodes can be separated, as in a microbial fuel cell, biofilm formation on the cathode increases the potential difference between the two and the resulting power output. Most patented fuel cells using metal cathodes do not refer specifically to ennoblement in the disclosures.","PeriodicalId":20875,"journal":{"name":"Recent Patents on Materials Science","volume":"6 1","pages":"20-28"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ennoblement Due to Biofilms: Indicator for Potential Corrosion and Source of Electrical Energy\",\"authors\":\"B. Little, Jason S Lee, R. Ray, Shelton Austin, Justin C. Biffinger\",\"doi\":\"10.2174/1874464811306010020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract : Ennoblement, a positive shift in corrosion potential, due to biofilm formation is the basis of patents for biofilm monitoring and power generating devices. Ennoblement is a global phenomenon that is routinely cited as a mechanism for microbiologically influenced corrosion of some passive alloys. Increased corrosion is attributed to acceleration of the oxygen reduction reaction via several potential mechanisms that have been debated for decades. Because the phenomenon is predictable and reproducible at specific locations, ennoblement is the basis for patented methods and devices for monitoring biofilm formation and relating ennobled potentials to increased likelihood of corrosion and for evaluating cleaning and biocide treatments. Furthermore, when anodes and cathodes can be separated, as in a microbial fuel cell, biofilm formation on the cathode increases the potential difference between the two and the resulting power output. Most patented fuel cells using metal cathodes do not refer specifically to ennoblement in the disclosures.\",\"PeriodicalId\":20875,\"journal\":{\"name\":\"Recent Patents on Materials Science\",\"volume\":\"6 1\",\"pages\":\"20-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874464811306010020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874464811306010020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要:由于生物膜的形成,腐蚀电位的正向变化是生物膜监测和发电装置专利的基础。强化是一种全球性的现象,通常被认为是微生物影响某些钝化合金腐蚀的一种机制。腐蚀的增加是由于氧还原反应的加速,通过几种潜在的机制已经争论了几十年。由于这种现象在特定位置是可预测的和可重复的,因此赋能是监测生物膜形成的专利方法和设备的基础,并将赋能电位与腐蚀可能性增加联系起来,并评估清洁和杀菌剂处理。此外,当阳极和阴极可以分离时,如在微生物燃料电池中,在阴极上形成的生物膜增加了两者之间的电位差和由此产生的输出功率。使用金属阴极的大多数获得专利的燃料电池在公开内容中没有具体提及强化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ennoblement Due to Biofilms: Indicator for Potential Corrosion and Source of Electrical Energy
Abstract : Ennoblement, a positive shift in corrosion potential, due to biofilm formation is the basis of patents for biofilm monitoring and power generating devices. Ennoblement is a global phenomenon that is routinely cited as a mechanism for microbiologically influenced corrosion of some passive alloys. Increased corrosion is attributed to acceleration of the oxygen reduction reaction via several potential mechanisms that have been debated for decades. Because the phenomenon is predictable and reproducible at specific locations, ennoblement is the basis for patented methods and devices for monitoring biofilm formation and relating ennobled potentials to increased likelihood of corrosion and for evaluating cleaning and biocide treatments. Furthermore, when anodes and cathodes can be separated, as in a microbial fuel cell, biofilm formation on the cathode increases the potential difference between the two and the resulting power output. Most patented fuel cells using metal cathodes do not refer specifically to ennoblement in the disclosures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信