S. Nahar, S. Blin, A. Pénarier, D. Coquillat, W. Knap, M. Hella
{"title":"130nm CMOS宽带宽放大集成天线耦合等离子体波探测器的特性","authors":"S. Nahar, S. Blin, A. Pénarier, D. Coquillat, W. Knap, M. Hella","doi":"10.1109/MWSYM.2015.7166950","DOIUrl":null,"url":null,"abstract":"A fully integrated 0.3 THz antenna-coupled plasma-wave detector with 10 GHz (measured) bandwidth is presented. Fabricated in 130nm CMOS technology, the chip is formed of an E-shaped patch antenna, plasmonic based Field Effect Transistor (FET) detector and a wide bandwidth amplifier employing inductive shunt peaking. The open drain mode of operation of the detector achieves an absolute responsivity of 10 V/W with a minimum signal to noise ratio (SNR) of 40 dB over the entire bandwidth. With a drain current of 0.24 mA, the responsivity increases by 10X with a decrease in bandwidth to 3 GHz. The detector is also characterized without the on chip amplifier for imaging applications and shows a measured absolute responsivity of 150 V/W for a drain current of 5 μA at 0.3 THz.","PeriodicalId":6493,"journal":{"name":"2015 IEEE MTT-S International Microwave Symposium","volume":"6 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterization of integrated antenna-coupled plasma-wave detectors with wide bandwidth amplification in 130nm CMOS\",\"authors\":\"S. Nahar, S. Blin, A. Pénarier, D. Coquillat, W. Knap, M. Hella\",\"doi\":\"10.1109/MWSYM.2015.7166950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fully integrated 0.3 THz antenna-coupled plasma-wave detector with 10 GHz (measured) bandwidth is presented. Fabricated in 130nm CMOS technology, the chip is formed of an E-shaped patch antenna, plasmonic based Field Effect Transistor (FET) detector and a wide bandwidth amplifier employing inductive shunt peaking. The open drain mode of operation of the detector achieves an absolute responsivity of 10 V/W with a minimum signal to noise ratio (SNR) of 40 dB over the entire bandwidth. With a drain current of 0.24 mA, the responsivity increases by 10X with a decrease in bandwidth to 3 GHz. The detector is also characterized without the on chip amplifier for imaging applications and shows a measured absolute responsivity of 150 V/W for a drain current of 5 μA at 0.3 THz.\",\"PeriodicalId\":6493,\"journal\":{\"name\":\"2015 IEEE MTT-S International Microwave Symposium\",\"volume\":\"6 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2015.7166950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2015.7166950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of integrated antenna-coupled plasma-wave detectors with wide bandwidth amplification in 130nm CMOS
A fully integrated 0.3 THz antenna-coupled plasma-wave detector with 10 GHz (measured) bandwidth is presented. Fabricated in 130nm CMOS technology, the chip is formed of an E-shaped patch antenna, plasmonic based Field Effect Transistor (FET) detector and a wide bandwidth amplifier employing inductive shunt peaking. The open drain mode of operation of the detector achieves an absolute responsivity of 10 V/W with a minimum signal to noise ratio (SNR) of 40 dB over the entire bandwidth. With a drain current of 0.24 mA, the responsivity increases by 10X with a decrease in bandwidth to 3 GHz. The detector is also characterized without the on chip amplifier for imaging applications and shows a measured absolute responsivity of 150 V/W for a drain current of 5 μA at 0.3 THz.