二维Rossby波动方程的非线性自伴随与不变解

R. Cimpoiasu, R. Constantinescu
{"title":"二维Rossby波动方程的非线性自伴随与不变解","authors":"R. Cimpoiasu, R. Constantinescu","doi":"10.2478/s11534-014-0430-6","DOIUrl":null,"url":null,"abstract":"The paper investigates the nonlinear self-adjointness of the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane. It is a particular form of Rossby equation which does not possess variational structure and it is studied using a recently method developed by Ibragimov. The conservation laws associated with the infinite-dimensional symmetry Lie algebra models are constructed and analyzed. Based on this Lie algebra, some classes of similarity invariant solutions with nonconstant linear and nonlinear shears are obtained. It is also shown how one of the conservation laws generates a particular wave solution of this equation.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"44 1","pages":"81-89"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Nonlinear self-adjointness and invariant solutions of a 2D Rossby wave equation\",\"authors\":\"R. Cimpoiasu, R. Constantinescu\",\"doi\":\"10.2478/s11534-014-0430-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the nonlinear self-adjointness of the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane. It is a particular form of Rossby equation which does not possess variational structure and it is studied using a recently method developed by Ibragimov. The conservation laws associated with the infinite-dimensional symmetry Lie algebra models are constructed and analyzed. Based on this Lie algebra, some classes of similarity invariant solutions with nonconstant linear and nonlinear shears are obtained. It is also shown how one of the conservation laws generates a particular wave solution of this equation.\",\"PeriodicalId\":50985,\"journal\":{\"name\":\"Central European Journal of Physics\",\"volume\":\"44 1\",\"pages\":\"81-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11534-014-0430-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-014-0430-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

研究了平面上非线性无粘正压非发散涡度方程的非线性自伴随性。它是不具有变分结构的罗斯比方程的一种特殊形式,用伊布拉吉莫夫最近提出的一种方法对它进行了研究。构造并分析了无限维对称李代数模型的守恒律。在此基础上,得到了一类具有非常线性和非线性剪切的相似不变解。它还显示了守恒定律之一如何产生这个方程的一个特定的波动解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear self-adjointness and invariant solutions of a 2D Rossby wave equation
The paper investigates the nonlinear self-adjointness of the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane. It is a particular form of Rossby equation which does not possess variational structure and it is studied using a recently method developed by Ibragimov. The conservation laws associated with the infinite-dimensional symmetry Lie algebra models are constructed and analyzed. Based on this Lie algebra, some classes of similarity invariant solutions with nonconstant linear and nonlinear shears are obtained. It is also shown how one of the conservation laws generates a particular wave solution of this equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Physics
Central European Journal of Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
3.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信