铁矿烧结矿三维体素数据的非负矩阵分解持续同源性分析

IF 0.4 Q4 MATHEMATICS, APPLIED
I. Obayashi, M. Kimura
{"title":"铁矿烧结矿三维体素数据的非负矩阵分解持续同源性分析","authors":"I. Obayashi, M. Kimura","doi":"10.14495/jsiaml.14.151","DOIUrl":null,"url":null,"abstract":"This paper proposes a data analysis method using persistent homology and nonnegative matrix factorization. A concatenated persistence image technique is used to extract coexisting structures from the persistence diagrams of different dimensions hidden behind the data. To demonstrate the potential of our method, we apply the method to 3D voxel data of iron ore sinters obtained by X-ray computed tomography. The analysis successfully captures the coexistence structures in these iron ore sinters.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Persistent homology analysis with nonnegative matrix factorization for 3D voxel data of iron ore sinters\",\"authors\":\"I. Obayashi, M. Kimura\",\"doi\":\"10.14495/jsiaml.14.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a data analysis method using persistent homology and nonnegative matrix factorization. A concatenated persistence image technique is used to extract coexisting structures from the persistence diagrams of different dimensions hidden behind the data. To demonstrate the potential of our method, we apply the method to 3D voxel data of iron ore sinters obtained by X-ray computed tomography. The analysis successfully captures the coexistence structures in these iron ore sinters.\",\"PeriodicalId\":42099,\"journal\":{\"name\":\"JSIAM Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSIAM Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14495/jsiaml.14.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.14.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于持续同调和非负矩阵分解的数据分析方法。使用连接持久化图像技术从隐藏在数据后面的不同维的持久化图中提取共存结构。为了证明该方法的潜力,我们将该方法应用于通过x射线计算机断层扫描获得的铁矿石烧结体的三维体素数据。分析成功地捕获了这些铁矿烧结矿中的共存结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistent homology analysis with nonnegative matrix factorization for 3D voxel data of iron ore sinters
This paper proposes a data analysis method using persistent homology and nonnegative matrix factorization. A concatenated persistence image technique is used to extract coexisting structures from the persistence diagrams of different dimensions hidden behind the data. To demonstrate the potential of our method, we apply the method to 3D voxel data of iron ore sinters obtained by X-ray computed tomography. The analysis successfully captures the coexistence structures in these iron ore sinters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JSIAM Letters
JSIAM Letters MATHEMATICS, APPLIED-
自引率
25.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信