T. Ait-Ettajer, F. Giannangeli, J. Wood, John White, A. Litun
{"title":"基于地质力学的墨西哥湾深海钻井优化:以Buckskin为例","authors":"T. Ait-Ettajer, F. Giannangeli, J. Wood, John White, A. Litun","doi":"10.4043/29652-MS","DOIUrl":null,"url":null,"abstract":"\n The optimization of the field development in the deepwater Gulf of Mexico (GOM) requires the collaboaration of multiple disciplines including drilling, geophysics, geology, petrophysics and geomechanics. The latter has been on the rise for several decades (Brehm, Davis, Ward, & Bowman, 2004) (Crawford, Homburg, Freysteinson, & Amoruso, 2018) (Zaki, Li, & Clinton, 2018), and it contributed to adding value through reducing the cost and the risks of drilling and completion in geologically complex areas such as the lower tertiary Wilcox. In the case of Buckskin field (Keathely Canyon), the use of 1D and 3D geomechanics techniques was necessary for the optimization of the drilling of the first development well in 2018, due to the high geological complexity (Ait-Ettajer, et al., 2017) and the chosen drilling design that included a highly deviated section through the reservoir section, in order to ensure a maximum reservoir contact and high well deliverability.\n The geomechanics study, combined with a regional and local structural geology evaluation, indicated that the optimal well azimuth for the reservoir section is along the maximum horizontal stress since the tectonic regime is strike-slip (Tiwari, 2013), and that the completion integrity will be maintained throughout the life of the well. The results of the geomechanics study were in line with the prediction and ensured the injection of more than 4 million pounds of proppant in the reservoir section.","PeriodicalId":10948,"journal":{"name":"Day 2 Tue, May 07, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Drilling in Deep-Offshore Gulf of Mexico Using Geomechanics: Example from Buckskin\",\"authors\":\"T. Ait-Ettajer, F. Giannangeli, J. Wood, John White, A. Litun\",\"doi\":\"10.4043/29652-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The optimization of the field development in the deepwater Gulf of Mexico (GOM) requires the collaboaration of multiple disciplines including drilling, geophysics, geology, petrophysics and geomechanics. The latter has been on the rise for several decades (Brehm, Davis, Ward, & Bowman, 2004) (Crawford, Homburg, Freysteinson, & Amoruso, 2018) (Zaki, Li, & Clinton, 2018), and it contributed to adding value through reducing the cost and the risks of drilling and completion in geologically complex areas such as the lower tertiary Wilcox. In the case of Buckskin field (Keathely Canyon), the use of 1D and 3D geomechanics techniques was necessary for the optimization of the drilling of the first development well in 2018, due to the high geological complexity (Ait-Ettajer, et al., 2017) and the chosen drilling design that included a highly deviated section through the reservoir section, in order to ensure a maximum reservoir contact and high well deliverability.\\n The geomechanics study, combined with a regional and local structural geology evaluation, indicated that the optimal well azimuth for the reservoir section is along the maximum horizontal stress since the tectonic regime is strike-slip (Tiwari, 2013), and that the completion integrity will be maintained throughout the life of the well. The results of the geomechanics study were in line with the prediction and ensured the injection of more than 4 million pounds of proppant in the reservoir section.\",\"PeriodicalId\":10948,\"journal\":{\"name\":\"Day 2 Tue, May 07, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, May 07, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29652-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, May 07, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29652-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Drilling in Deep-Offshore Gulf of Mexico Using Geomechanics: Example from Buckskin
The optimization of the field development in the deepwater Gulf of Mexico (GOM) requires the collaboaration of multiple disciplines including drilling, geophysics, geology, petrophysics and geomechanics. The latter has been on the rise for several decades (Brehm, Davis, Ward, & Bowman, 2004) (Crawford, Homburg, Freysteinson, & Amoruso, 2018) (Zaki, Li, & Clinton, 2018), and it contributed to adding value through reducing the cost and the risks of drilling and completion in geologically complex areas such as the lower tertiary Wilcox. In the case of Buckskin field (Keathely Canyon), the use of 1D and 3D geomechanics techniques was necessary for the optimization of the drilling of the first development well in 2018, due to the high geological complexity (Ait-Ettajer, et al., 2017) and the chosen drilling design that included a highly deviated section through the reservoir section, in order to ensure a maximum reservoir contact and high well deliverability.
The geomechanics study, combined with a regional and local structural geology evaluation, indicated that the optimal well azimuth for the reservoir section is along the maximum horizontal stress since the tectonic regime is strike-slip (Tiwari, 2013), and that the completion integrity will be maintained throughout the life of the well. The results of the geomechanics study were in line with the prediction and ensured the injection of more than 4 million pounds of proppant in the reservoir section.