健康信息如何在Twitter上传播:菲律宾结核病数据的who和what

E. Chan, M. Chan, Shyrene Ching, Stanley Lawrence Sie, Angelyn R. Lao, J. M. A. Bernadas, C. Cheng
{"title":"健康信息如何在Twitter上传播:菲律宾结核病数据的who和what","authors":"E. Chan, M. Chan, Shyrene Ching, Stanley Lawrence Sie, Angelyn R. Lao, J. M. A. Bernadas, C. Cheng","doi":"10.5220/0010818000003123","DOIUrl":null,"url":null,"abstract":"Twitter is a popular platform for disseminating health information. Unfortunately, there is no clear way to monitor how information reaches the intended audiences. This research examined how health information spreads on Twitter and identified factors that affect the spreading within the Philippines. We created a process whose goal is to generate results that experts can deeply analyze to reveal insights into information spread. The process consists of crawling Twitter data, transforming the data and applying sentiment identification and topic modeling, and performing Social Network Analysis (SNA). The SNA graphs allow for the study of the interactions between Twitter users and tweets while giving insights on influential users and topics discussed across clusters. The study explored and utilized tuberculosis-related tweets. Though the algorithms were meant to process tweets written in Filipino, the process is mostly language-agnostic and can be applied to Twitter data. The results also help in identifying strategies that can improve health information spread on Twitter in the Philippines.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":"37 1","pages":"421-429"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Health Information Spreads in Twitter: The Whos and Whats of Philippine TB-data\",\"authors\":\"E. Chan, M. Chan, Shyrene Ching, Stanley Lawrence Sie, Angelyn R. Lao, J. M. A. Bernadas, C. Cheng\",\"doi\":\"10.5220/0010818000003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is a popular platform for disseminating health information. Unfortunately, there is no clear way to monitor how information reaches the intended audiences. This research examined how health information spreads on Twitter and identified factors that affect the spreading within the Philippines. We created a process whose goal is to generate results that experts can deeply analyze to reveal insights into information spread. The process consists of crawling Twitter data, transforming the data and applying sentiment identification and topic modeling, and performing Social Network Analysis (SNA). The SNA graphs allow for the study of the interactions between Twitter users and tweets while giving insights on influential users and topics discussed across clusters. The study explored and utilized tuberculosis-related tweets. Though the algorithms were meant to process tweets written in Filipino, the process is mostly language-agnostic and can be applied to Twitter data. The results also help in identifying strategies that can improve health information spread on Twitter in the Philippines.\",\"PeriodicalId\":20676,\"journal\":{\"name\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"volume\":\"37 1\",\"pages\":\"421-429\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010818000003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010818000003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推特是一个传播健康信息的流行平台。不幸的是,没有明确的方法来监控信息是如何到达目标受众的。这项研究调查了健康信息如何在Twitter上传播,并确定了影响菲律宾境内传播的因素。我们创建了一个流程,其目标是生成专家可以深入分析的结果,以揭示对信息传播的见解。该过程包括抓取Twitter数据,转换数据并应用情感识别和主题建模,以及执行社交网络分析(SNA)。SNA图允许研究Twitter用户和tweet之间的交互,同时提供关于有影响力的用户和跨集群讨论的主题的见解。该研究探索并利用了与结核病相关的推文。虽然这些算法是用来处理用菲律宾语写的推文的,但这个过程主要是语言无关的,可以应用于推特数据。研究结果还有助于确定可以改善菲律宾Twitter上健康信息传播的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Health Information Spreads in Twitter: The Whos and Whats of Philippine TB-data
Twitter is a popular platform for disseminating health information. Unfortunately, there is no clear way to monitor how information reaches the intended audiences. This research examined how health information spreads on Twitter and identified factors that affect the spreading within the Philippines. We created a process whose goal is to generate results that experts can deeply analyze to reveal insights into information spread. The process consists of crawling Twitter data, transforming the data and applying sentiment identification and topic modeling, and performing Social Network Analysis (SNA). The SNA graphs allow for the study of the interactions between Twitter users and tweets while giving insights on influential users and topics discussed across clusters. The study explored and utilized tuberculosis-related tweets. Though the algorithms were meant to process tweets written in Filipino, the process is mostly language-agnostic and can be applied to Twitter data. The results also help in identifying strategies that can improve health information spread on Twitter in the Philippines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信