用b样条作为Ritz变分基函数求解约束自由量子粒子的薛定谔方程

N AnandaramMandyam
{"title":"用b样条作为Ritz变分基函数求解约束自由量子粒子的薛定谔方程","authors":"N AnandaramMandyam","doi":"10.12723/MJS.56.2","DOIUrl":null,"url":null,"abstract":"B-Splines as piecewise adaptation of Bernstein polynomials (aka, B-polys) are widely used as Ritz variational basis functions in solving many problems in the fields of quantum mechanics and atomic physics. In this paper they are used to solve the 1-D stationary Schrodinger equation (TISE) for a free quantum particle subject to a fixed domain length by using the Python software SPLIPY with different sets of computation parameters. In every case it was found that over 60 percent of energy levels had excellent accuracy thereby proving that the use of B-spline collocation is a preferred method.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of B-Splines as Ritz Variational Basis Functions to Solve the Schrodinger Equation (TISE) for a constrained free Quantum Particle\",\"authors\":\"N AnandaramMandyam\",\"doi\":\"10.12723/MJS.56.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B-Splines as piecewise adaptation of Bernstein polynomials (aka, B-polys) are widely used as Ritz variational basis functions in solving many problems in the fields of quantum mechanics and atomic physics. In this paper they are used to solve the 1-D stationary Schrodinger equation (TISE) for a free quantum particle subject to a fixed domain length by using the Python software SPLIPY with different sets of computation parameters. In every case it was found that over 60 percent of energy levels had excellent accuracy thereby proving that the use of B-spline collocation is a preferred method.\",\"PeriodicalId\":18050,\"journal\":{\"name\":\"Mapana Journal of Sciences\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mapana Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12723/MJS.56.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/MJS.56.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

b样条作为Bernstein多项式的分段改编,被广泛用作里兹变分基函数,用于解决量子力学和原子物理领域的许多问题。本文采用不同的计算参数集,利用Python软件SPLIPY求解具有固定域长度的自由量子粒子的一维平稳薛定谔方程(TISE)。在每种情况下,发现超过60%的能级具有极好的准确性,从而证明使用b样条搭配是首选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of B-Splines as Ritz Variational Basis Functions to Solve the Schrodinger Equation (TISE) for a constrained free Quantum Particle
B-Splines as piecewise adaptation of Bernstein polynomials (aka, B-polys) are widely used as Ritz variational basis functions in solving many problems in the fields of quantum mechanics and atomic physics. In this paper they are used to solve the 1-D stationary Schrodinger equation (TISE) for a free quantum particle subject to a fixed domain length by using the Python software SPLIPY with different sets of computation parameters. In every case it was found that over 60 percent of energy levels had excellent accuracy thereby proving that the use of B-spline collocation is a preferred method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信