半参数加性回归

J. Cuzick
{"title":"半参数加性回归","authors":"J. Cuzick","doi":"10.1111/J.2517-6161.1992.TB01455.X","DOIUrl":null,"url":null,"abstract":"A simple estimator for β is proposed for the model y=x'β+g(1)+error, g smooth but unknown. The approach is to approximate the estimating equation obtained from a semiparametric likelihood and in the simplest case reduces to minimizing the distance between the pseudoresiduals y-x'β and a local linear cross-validated estimate of them. When the errors are independent with finite variance, the bias and variance of the estimate are computed and compared against the least squares estimate with g known","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"54 1","pages":"831-843"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Semiparametric additive regression\",\"authors\":\"J. Cuzick\",\"doi\":\"10.1111/J.2517-6161.1992.TB01455.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple estimator for β is proposed for the model y=x'β+g(1)+error, g smooth but unknown. The approach is to approximate the estimating equation obtained from a semiparametric likelihood and in the simplest case reduces to minimizing the distance between the pseudoresiduals y-x'β and a local linear cross-validated estimate of them. When the errors are independent with finite variance, the bias and variance of the estimate are computed and compared against the least squares estimate with g known\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"54 1\",\"pages\":\"831-843\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1992.TB01455.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1992.TB01455.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

对于模型y=x′β+g(1)+误差,g光滑但未知,提出了一个简单的β估计量。该方法是近似由半参数似然得到的估计方程,在最简单的情况下,将假残差y-x′β与它们的局部线性交叉验证估计之间的距离减小到最小。当误差与有限方差无关时,计算估计的偏差和方差,并与已知g的最小二乘估计进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiparametric additive regression
A simple estimator for β is proposed for the model y=x'β+g(1)+error, g smooth but unknown. The approach is to approximate the estimating equation obtained from a semiparametric likelihood and in the simplest case reduces to minimizing the distance between the pseudoresiduals y-x'β and a local linear cross-validated estimate of them. When the errors are independent with finite variance, the bias and variance of the estimate are computed and compared against the least squares estimate with g known
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信