阻燃多层保温材料保温性能影响因素的实验研究

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoyong Ma, Shuping Chen, L. Chen, Yujie Wang, Shufeng Jin, Yang Yu, Maoyuan Mi, Chaofan Shi, Yagang Shi
{"title":"阻燃多层保温材料保温性能影响因素的实验研究","authors":"Xiaoyong Ma, Shuping Chen, L. Chen, Yujie Wang, Shufeng Jin, Yang Yu, Maoyuan Mi, Chaofan Shi, Yagang Shi","doi":"10.17222/mit.2023.736","DOIUrl":null,"url":null,"abstract":"Flame-retardant multilayer insulation materials act as effective thermal insulation blankets of cryogenic containers that store flammable and explosive cryogenic liquids. This study used standard static liquid nitrogen boil-off calorimetry to test the insulation performance of eight groups of flame-retardant multilayer insulation materials with different wrapping parameters. The effects of four factors, namely the layer density, seaming process, number of reflector layer, and variable-density multilayer insulation arrangement, on the insulation performance were analysed. Three layer densities were considered: 4.47, 3.08, and 2.50 layers/mm. Two types of seaming processes were discussed: the overlapped and fold-over seaming processes. Three numbers of reflector layers were considered: 60, 70, and 80. Two variable-density multilayer insulation arrangements with similar thicknesses were discussed: 10-10-40 and 20-20-20 layers of reflectors allocated for low-, medium- and high-density segments. The conclusions are as follows: Decreasing the layer density enhances the performance of multilayer insulation; Using the fold-over seaming process results in less heat flux and lower apparent thermal conductivity; An increase in the number of reflector layers weakens radiative heat transfer, resulting in better thermal insulation; Furthermore, for a given wrapping thickness, reducing the number of reflectors appropriately in low- and medium-density segments improves the insulation performance; Optimizing and controlling the layer density of each density segment are also essential for variable-density multilayer insulation effects. This study provides supporting theories and reference data for practical engineering applications.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"42 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL STUDY ON THE FACTORS AFFECTING THE INSULATION PERFORMANCE OF FLAME-RETARDANT MULTILAYER INSULATION MATERIALS\",\"authors\":\"Xiaoyong Ma, Shuping Chen, L. Chen, Yujie Wang, Shufeng Jin, Yang Yu, Maoyuan Mi, Chaofan Shi, Yagang Shi\",\"doi\":\"10.17222/mit.2023.736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flame-retardant multilayer insulation materials act as effective thermal insulation blankets of cryogenic containers that store flammable and explosive cryogenic liquids. This study used standard static liquid nitrogen boil-off calorimetry to test the insulation performance of eight groups of flame-retardant multilayer insulation materials with different wrapping parameters. The effects of four factors, namely the layer density, seaming process, number of reflector layer, and variable-density multilayer insulation arrangement, on the insulation performance were analysed. Three layer densities were considered: 4.47, 3.08, and 2.50 layers/mm. Two types of seaming processes were discussed: the overlapped and fold-over seaming processes. Three numbers of reflector layers were considered: 60, 70, and 80. Two variable-density multilayer insulation arrangements with similar thicknesses were discussed: 10-10-40 and 20-20-20 layers of reflectors allocated for low-, medium- and high-density segments. The conclusions are as follows: Decreasing the layer density enhances the performance of multilayer insulation; Using the fold-over seaming process results in less heat flux and lower apparent thermal conductivity; An increase in the number of reflector layers weakens radiative heat transfer, resulting in better thermal insulation; Furthermore, for a given wrapping thickness, reducing the number of reflectors appropriately in low- and medium-density segments improves the insulation performance; Optimizing and controlling the layer density of each density segment are also essential for variable-density multilayer insulation effects. This study provides supporting theories and reference data for practical engineering applications.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.736\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.736","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阻燃多层保温材料是储存易燃易爆低温液体的低温容器的有效保温毯。本研究采用标准静态液氮蒸发量热法,对8组不同包覆参数的阻燃多层保温材料的保温性能进行了测试。分析了层密度、接缝工艺、反射层数、变密度多层保温布置等4个因素对保温性能的影响。考虑了三种层密度:4.47、3.08和2.50层/mm。讨论了两种缝法:叠缝法和叠缝法。考虑了三种反射层数:60、70和80。讨论了两种厚度相近的变密度多层绝缘布置:10-10-40层和20-20-20层反射器分别分配给低、中、高密度段。研究结果表明:层密度越小,多层保温性能越好;采用折叠式缝合工艺,热流密度较小,表观导热系数较低;增加反射层的数量会减弱辐射传热,从而产生更好的隔热效果;此外,对于给定的包裹厚度,适当减少低密度和中密度段的反射器数量可以改善绝缘性能;优化和控制各密度段的层密度也是变密度多层保温效果的关键。本研究为实际工程应用提供理论支持和参考数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPERIMENTAL STUDY ON THE FACTORS AFFECTING THE INSULATION PERFORMANCE OF FLAME-RETARDANT MULTILAYER INSULATION MATERIALS
Flame-retardant multilayer insulation materials act as effective thermal insulation blankets of cryogenic containers that store flammable and explosive cryogenic liquids. This study used standard static liquid nitrogen boil-off calorimetry to test the insulation performance of eight groups of flame-retardant multilayer insulation materials with different wrapping parameters. The effects of four factors, namely the layer density, seaming process, number of reflector layer, and variable-density multilayer insulation arrangement, on the insulation performance were analysed. Three layer densities were considered: 4.47, 3.08, and 2.50 layers/mm. Two types of seaming processes were discussed: the overlapped and fold-over seaming processes. Three numbers of reflector layers were considered: 60, 70, and 80. Two variable-density multilayer insulation arrangements with similar thicknesses were discussed: 10-10-40 and 20-20-20 layers of reflectors allocated for low-, medium- and high-density segments. The conclusions are as follows: Decreasing the layer density enhances the performance of multilayer insulation; Using the fold-over seaming process results in less heat flux and lower apparent thermal conductivity; An increase in the number of reflector layers weakens radiative heat transfer, resulting in better thermal insulation; Furthermore, for a given wrapping thickness, reducing the number of reflectors appropriately in low- and medium-density segments improves the insulation performance; Optimizing and controlling the layer density of each density segment are also essential for variable-density multilayer insulation effects. This study provides supporting theories and reference data for practical engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiali in tehnologije
Materiali in tehnologije 工程技术-材料科学:综合
CiteScore
1.30
自引率
0.00%
发文量
73
审稿时长
4-8 weeks
期刊介绍: The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信