{"title":"具有强puf的新密钥更新:一种侧通道安全的新方法","authors":"Xiaodan Xi, Aydin Aysu, M. Orshansky","doi":"10.1109/HST.2018.8383899","DOIUrl":null,"url":null,"abstract":"Side-channel attacks on cryptographic implementations threaten system security via the loss of the secret key. Fresh re-keying techniques aim to mitigate these attacks by regularly updating the key so that the side-channel exposure for each key is minimized. Existing key update schemes generate fresh keys by processing a root key with arithmetic operations which have, unfortunately, been demonstrated to be also vulnerable to side-channel attacks. We propose a novel approach to fresh re-keying that replaces the arithmetic key update function with a strong Physically Unclonable Function (PUF). We show that the security of our scheme hinges on the resilience of the PUF to a power side-channel attack and propose a realization based on a Subthreshold Current Array (SCA) PUF. We show that SCA-PUF is resistant to simple power analysis and that it is resilient to a modeling attack that uses machine learning on the power side-channel. We target an insecure device and secure server encryption scenario for which we provide an efficient and scalable method of PUF enrollment. We finally propose an end-to-end encryption system with the PUF-based fresh re-keying scheme, using a reverse fuzzy extractor construction.","PeriodicalId":6574,"journal":{"name":"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"32 1","pages":"118-125"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fresh re-keying with strong PUFs: A new approach to side-channel security\",\"authors\":\"Xiaodan Xi, Aydin Aysu, M. Orshansky\",\"doi\":\"10.1109/HST.2018.8383899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Side-channel attacks on cryptographic implementations threaten system security via the loss of the secret key. Fresh re-keying techniques aim to mitigate these attacks by regularly updating the key so that the side-channel exposure for each key is minimized. Existing key update schemes generate fresh keys by processing a root key with arithmetic operations which have, unfortunately, been demonstrated to be also vulnerable to side-channel attacks. We propose a novel approach to fresh re-keying that replaces the arithmetic key update function with a strong Physically Unclonable Function (PUF). We show that the security of our scheme hinges on the resilience of the PUF to a power side-channel attack and propose a realization based on a Subthreshold Current Array (SCA) PUF. We show that SCA-PUF is resistant to simple power analysis and that it is resilient to a modeling attack that uses machine learning on the power side-channel. We target an insecure device and secure server encryption scenario for which we provide an efficient and scalable method of PUF enrollment. We finally propose an end-to-end encryption system with the PUF-based fresh re-keying scheme, using a reverse fuzzy extractor construction.\",\"PeriodicalId\":6574,\"journal\":{\"name\":\"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"volume\":\"32 1\",\"pages\":\"118-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST.2018.8383899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2018.8383899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fresh re-keying with strong PUFs: A new approach to side-channel security
Side-channel attacks on cryptographic implementations threaten system security via the loss of the secret key. Fresh re-keying techniques aim to mitigate these attacks by regularly updating the key so that the side-channel exposure for each key is minimized. Existing key update schemes generate fresh keys by processing a root key with arithmetic operations which have, unfortunately, been demonstrated to be also vulnerable to side-channel attacks. We propose a novel approach to fresh re-keying that replaces the arithmetic key update function with a strong Physically Unclonable Function (PUF). We show that the security of our scheme hinges on the resilience of the PUF to a power side-channel attack and propose a realization based on a Subthreshold Current Array (SCA) PUF. We show that SCA-PUF is resistant to simple power analysis and that it is resilient to a modeling attack that uses machine learning on the power side-channel. We target an insecure device and secure server encryption scenario for which we provide an efficient and scalable method of PUF enrollment. We finally propose an end-to-end encryption system with the PUF-based fresh re-keying scheme, using a reverse fuzzy extractor construction.