Shibin Wang, Pengfei Zhao, Xiaodong Jian, Yingbang Yao, T. Tao, B. Liang, Shengguo Lu
{"title":"Pb 0.97La 0.02(Zr 0.46-xSn 0.54Ti x) o3反铁电厚膜陶瓷的大储能密度和电强度","authors":"Shibin Wang, Pengfei Zhao, Xiaodong Jian, Yingbang Yao, T. Tao, B. Liang, Shengguo Lu","doi":"10.2139/ssrn.3910607","DOIUrl":null,"url":null,"abstract":"Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3 (PLZST, x=0.04, 0.06, 0.08, 0.15, and 0.18) antiferroelectric thick film ceramics were fabricated via a tape-casting approach. The energy storage performance and electrocaloric effect were investigated in terms of the measurements on the hysteresis loops and Maxwell relation. The maximum value of energy storage density of 5.2 J/cm3 and efficiency of 78.2 % were procured at 600 kV/cm in Pb0.97La0.02(Zr0.42-xSn0.54Ti0.04)O3 thick film ceramics at room temperature. In addition, the ECE was indirectly calculated using the Maxwell relation and the P-E loops as a function of temperature and electric field, a reversible adiabatic temperature change of ΔT=2.47 °C was presented in Pb0.97La0.02(Zr0.42-xSn0.54Ti0.04)O3 thick film ceramics at 500 kV/cm, corresponding to the calculated electrocaloric strength of 0.48 K(MV/m)-1. These results indicate that the PLZST thick film ceramics are promising for practical applications in high-power energy storage capacitors and solid-state refrigeration devices.","PeriodicalId":7765,"journal":{"name":"AMI: Scripta Materialia","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Energy Storage Density and Electrocaloric Strength of Pb 0.97La 0.02(Zr 0.46-xSn 0.54Ti x)O 3 Antiferroelectric Thick Film Ceramics\",\"authors\":\"Shibin Wang, Pengfei Zhao, Xiaodong Jian, Yingbang Yao, T. Tao, B. Liang, Shengguo Lu\",\"doi\":\"10.2139/ssrn.3910607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3 (PLZST, x=0.04, 0.06, 0.08, 0.15, and 0.18) antiferroelectric thick film ceramics were fabricated via a tape-casting approach. The energy storage performance and electrocaloric effect were investigated in terms of the measurements on the hysteresis loops and Maxwell relation. The maximum value of energy storage density of 5.2 J/cm3 and efficiency of 78.2 % were procured at 600 kV/cm in Pb0.97La0.02(Zr0.42-xSn0.54Ti0.04)O3 thick film ceramics at room temperature. In addition, the ECE was indirectly calculated using the Maxwell relation and the P-E loops as a function of temperature and electric field, a reversible adiabatic temperature change of ΔT=2.47 °C was presented in Pb0.97La0.02(Zr0.42-xSn0.54Ti0.04)O3 thick film ceramics at 500 kV/cm, corresponding to the calculated electrocaloric strength of 0.48 K(MV/m)-1. These results indicate that the PLZST thick film ceramics are promising for practical applications in high-power energy storage capacitors and solid-state refrigeration devices.\",\"PeriodicalId\":7765,\"journal\":{\"name\":\"AMI: Scripta Materialia\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Scripta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3910607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Scripta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3910607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Energy Storage Density and Electrocaloric Strength of Pb 0.97La 0.02(Zr 0.46-xSn 0.54Ti x)O 3 Antiferroelectric Thick Film Ceramics
Pb0.97La0.02(Zr0.46-xSn0.54Tix)O3 (PLZST, x=0.04, 0.06, 0.08, 0.15, and 0.18) antiferroelectric thick film ceramics were fabricated via a tape-casting approach. The energy storage performance and electrocaloric effect were investigated in terms of the measurements on the hysteresis loops and Maxwell relation. The maximum value of energy storage density of 5.2 J/cm3 and efficiency of 78.2 % were procured at 600 kV/cm in Pb0.97La0.02(Zr0.42-xSn0.54Ti0.04)O3 thick film ceramics at room temperature. In addition, the ECE was indirectly calculated using the Maxwell relation and the P-E loops as a function of temperature and electric field, a reversible adiabatic temperature change of ΔT=2.47 °C was presented in Pb0.97La0.02(Zr0.42-xSn0.54Ti0.04)O3 thick film ceramics at 500 kV/cm, corresponding to the calculated electrocaloric strength of 0.48 K(MV/m)-1. These results indicate that the PLZST thick film ceramics are promising for practical applications in high-power energy storage capacitors and solid-state refrigeration devices.