Zhou Haiping , Zhang Hongbin , Liu Jie , Qin Shengxue , Lv Yuting
{"title":"基于动态再结晶动力学方程的典型镍基高温合金热变形流变应力预测","authors":"Zhou Haiping , Zhang Hongbin , Liu Jie , Qin Shengxue , Lv Yuting","doi":"10.1016/S1875-5372(18)30240-6","DOIUrl":null,"url":null,"abstract":"<div><p>The hot deformation behavior of a typical nickel-based superalloy was investigated by isothermal compression tests in the temperature range of 1010∼1160 °C and strain rate range of 0.001∼1 s<sup>−1</sup>. The results indicate that the work hardening, dynamic recovery (DRV) and dynamic recrystallization (DRX) occurred in the alloy during hot deformation. Considering the coupled effects of deformation parameters on the flow behaviors of the alloy, the constitutive models were established to predict the flow stresses during the work hardening-DRV period and DRX periods. In the DRX period, the modified DRX kinetic equation was used to develop the constitutive models, and the strain for maximum softening rate was used in this equation. Additionally, the material constants in the constitutive models were expressed as the functions of Zener-Hollomon parameter by using a linear fitting method. Meanwhile, comparisons between the measured and the predicted flow stresses were carried out, while the correlation coefficient (<em>R</em>) and average absolute relative error (AARE) between the measured and predicted values were also calculated. The results confirm that the developed models could give an accurate estimation of the flow stresses.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 11","pages":"Pages 3329-3337"},"PeriodicalIF":0.6000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30240-6","citationCount":"9","resultStr":"{\"title\":\"Prediction of Flow Stresses for a Typical Nickel-Based Superalloy During Hot Deformation Based on Dynamic Recrystallization Kinetic Equation\",\"authors\":\"Zhou Haiping , Zhang Hongbin , Liu Jie , Qin Shengxue , Lv Yuting\",\"doi\":\"10.1016/S1875-5372(18)30240-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hot deformation behavior of a typical nickel-based superalloy was investigated by isothermal compression tests in the temperature range of 1010∼1160 °C and strain rate range of 0.001∼1 s<sup>−1</sup>. The results indicate that the work hardening, dynamic recovery (DRV) and dynamic recrystallization (DRX) occurred in the alloy during hot deformation. Considering the coupled effects of deformation parameters on the flow behaviors of the alloy, the constitutive models were established to predict the flow stresses during the work hardening-DRV period and DRX periods. In the DRX period, the modified DRX kinetic equation was used to develop the constitutive models, and the strain for maximum softening rate was used in this equation. Additionally, the material constants in the constitutive models were expressed as the functions of Zener-Hollomon parameter by using a linear fitting method. Meanwhile, comparisons between the measured and the predicted flow stresses were carried out, while the correlation coefficient (<em>R</em>) and average absolute relative error (AARE) between the measured and predicted values were also calculated. The results confirm that the developed models could give an accurate estimation of the flow stresses.</p></div>\",\"PeriodicalId\":21056,\"journal\":{\"name\":\"稀有金属材料与工程\",\"volume\":\"47 11\",\"pages\":\"Pages 3329-3337\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30240-6\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"稀有金属材料与工程\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875537218302406\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218302406","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of Flow Stresses for a Typical Nickel-Based Superalloy During Hot Deformation Based on Dynamic Recrystallization Kinetic Equation
The hot deformation behavior of a typical nickel-based superalloy was investigated by isothermal compression tests in the temperature range of 1010∼1160 °C and strain rate range of 0.001∼1 s−1. The results indicate that the work hardening, dynamic recovery (DRV) and dynamic recrystallization (DRX) occurred in the alloy during hot deformation. Considering the coupled effects of deformation parameters on the flow behaviors of the alloy, the constitutive models were established to predict the flow stresses during the work hardening-DRV period and DRX periods. In the DRX period, the modified DRX kinetic equation was used to develop the constitutive models, and the strain for maximum softening rate was used in this equation. Additionally, the material constants in the constitutive models were expressed as the functions of Zener-Hollomon parameter by using a linear fitting method. Meanwhile, comparisons between the measured and the predicted flow stresses were carried out, while the correlation coefficient (R) and average absolute relative error (AARE) between the measured and predicted values were also calculated. The results confirm that the developed models could give an accurate estimation of the flow stresses.