α酪蛋白与氟伐他汀和匹伐他汀结合行为的研究:光谱研究和分子模型

O. R. Miandehi, H. Dezhampanah
{"title":"α酪蛋白与氟伐他汀和匹伐他汀结合行为的研究:光谱研究和分子模型","authors":"O. R. Miandehi, H. Dezhampanah","doi":"10.26902/jsc_id115482","DOIUrl":null,"url":null,"abstract":"The interaction between alpha casein (α-CN) and two drugs, fluvastatin (FLU) and pitavastatin (PIT) was investigated using fluorescence, UV absorption and FTIR. In addition, the binding site was established by applying molecular modeling technique. Fluorescence data suggested that FLU and PIT quench the intrinsic fluorescence of α-CN. The binding constants for the interaction of FLU and PIT with α-CN were found to be (8.18±0.08)×104 M-1 and (9.04±0.07)×104 M-1, respectively, indicating that the binding affinity of PIT to α-CN was higher than that for FLU. The number of binding site FLU and PIT per α-CN were 1.06 and 1.04 respectively. Docking calculation showed the probable binding sites of FLU and PIT are located in the hydrophobic core of α-CN where the FLU and PIT are lined by hydrophobic residues and make three and four hydrogen bonds with FLU and PIT respectively. Simulation, molecular docking and experimental data reciprocally supported each other. Therefore, it can be concluded that α-CN can act as a carrier of FLU and PIT drugs.","PeriodicalId":24042,"journal":{"name":"Журнал структурной химии","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the behavior of alpha casein upon binding to fluvastatin and pitavastatin: A spectroscopic study and molecular modeling\",\"authors\":\"O. R. Miandehi, H. Dezhampanah\",\"doi\":\"10.26902/jsc_id115482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction between alpha casein (α-CN) and two drugs, fluvastatin (FLU) and pitavastatin (PIT) was investigated using fluorescence, UV absorption and FTIR. In addition, the binding site was established by applying molecular modeling technique. Fluorescence data suggested that FLU and PIT quench the intrinsic fluorescence of α-CN. The binding constants for the interaction of FLU and PIT with α-CN were found to be (8.18±0.08)×104 M-1 and (9.04±0.07)×104 M-1, respectively, indicating that the binding affinity of PIT to α-CN was higher than that for FLU. The number of binding site FLU and PIT per α-CN were 1.06 and 1.04 respectively. Docking calculation showed the probable binding sites of FLU and PIT are located in the hydrophobic core of α-CN where the FLU and PIT are lined by hydrophobic residues and make three and four hydrogen bonds with FLU and PIT respectively. Simulation, molecular docking and experimental data reciprocally supported each other. Therefore, it can be concluded that α-CN can act as a carrier of FLU and PIT drugs.\",\"PeriodicalId\":24042,\"journal\":{\"name\":\"Журнал структурной химии\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Журнал структурной химии\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26902/jsc_id115482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Журнал структурной химии","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26902/jsc_id115482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用荧光、紫外吸收和红外光谱研究了α-酪蛋白(α-CN)与氟伐他汀(FLU)和匹伐他汀(PIT)的相互作用。此外,应用分子模拟技术建立了结合位点。荧光数据表明,FLU和PIT猝灭了α-CN的固有荧光。FLU和PIT与α-CN相互作用的结合常数分别为(8.18±0.08)×104 M-1和(9.04±0.07)×104 M-1,表明PIT对α-CN的结合亲和力高于FLU。α-CN的结合位点FLU和PIT分别为1.06和1.04个。对接计算表明,FLU和PIT可能的结合位点位于α-CN的疏水核心,其中FLU和PIT被疏水残基排列,分别与FLU和PIT形成3个和4个氢键。模拟、分子对接和实验数据相互支持。因此,α-CN可以作为FLU和PIT药物的载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the behavior of alpha casein upon binding to fluvastatin and pitavastatin: A spectroscopic study and molecular modeling
The interaction between alpha casein (α-CN) and two drugs, fluvastatin (FLU) and pitavastatin (PIT) was investigated using fluorescence, UV absorption and FTIR. In addition, the binding site was established by applying molecular modeling technique. Fluorescence data suggested that FLU and PIT quench the intrinsic fluorescence of α-CN. The binding constants for the interaction of FLU and PIT with α-CN were found to be (8.18±0.08)×104 M-1 and (9.04±0.07)×104 M-1, respectively, indicating that the binding affinity of PIT to α-CN was higher than that for FLU. The number of binding site FLU and PIT per α-CN were 1.06 and 1.04 respectively. Docking calculation showed the probable binding sites of FLU and PIT are located in the hydrophobic core of α-CN where the FLU and PIT are lined by hydrophobic residues and make three and four hydrogen bonds with FLU and PIT respectively. Simulation, molecular docking and experimental data reciprocally supported each other. Therefore, it can be concluded that α-CN can act as a carrier of FLU and PIT drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信