{"title":"我们能否利用体型和道路特征来预测道路对哺乳动物的屏障效应?一个荟萃分析","authors":"H. Chen, J. Koprowski","doi":"10.4404/HYSTRIX–00185-2018","DOIUrl":null,"url":null,"abstract":"Habitat fragmentation and loss caused by road development are recognized as major threats to biodiversity and challenges to reconcile the pursuit of economic growth with the protection of wildlife habitats. Assessment of potential environmental impacts is essential in planning and design of road projects. Behavioral responses such as road avoidance that causes barrier effects are critical in assessment of effects of roads on species persistence. In this study, we synthesized literature of barrier effects on mammals to identify road characteristics and species traits that might serve as management indicators to anticipate barrier effects. We conducted a meta-analysis with 118 statistics of road crossings by 45 species from 36 studies. We used logit-transformed proportion of individuals not crossing roads as the effect size of barrier effect. Overall, all types of roads, from major highways to narrow forest roads, can impede movements for certain species of mammals. For data collected by observational methods, body mass, road width, road surface and data collection methods explained 53% of variation among data. Barrier effect decreased as body mass increased, and was increased by greater road width. Paved roads posed stronger barriers compared to gravel dirt roads. Capture-recapture methods tended to detect a weaker barrier effect compared tomethods that tracked individual movements. For data collected by experimental translocation, the probability of crossing following translocation was not affected by road width and body mass. We showed that interspecific variation of mammals in barrier effects can be explained by road characteristics and body size under natural condition, and can be useful to anticipate the species-specific magnitude of barrier effects of roads and aid in planning and design of road projects, as well as reassessment of existing roads.","PeriodicalId":55036,"journal":{"name":"Hystrix-Italian Journal of Mammalogy","volume":"21 1","pages":"1-7"},"PeriodicalIF":1.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Can we use body size and road characteristics to anticipate barrier effects of roads in mammals? A meta-analysis\",\"authors\":\"H. Chen, J. Koprowski\",\"doi\":\"10.4404/HYSTRIX–00185-2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Habitat fragmentation and loss caused by road development are recognized as major threats to biodiversity and challenges to reconcile the pursuit of economic growth with the protection of wildlife habitats. Assessment of potential environmental impacts is essential in planning and design of road projects. Behavioral responses such as road avoidance that causes barrier effects are critical in assessment of effects of roads on species persistence. In this study, we synthesized literature of barrier effects on mammals to identify road characteristics and species traits that might serve as management indicators to anticipate barrier effects. We conducted a meta-analysis with 118 statistics of road crossings by 45 species from 36 studies. We used logit-transformed proportion of individuals not crossing roads as the effect size of barrier effect. Overall, all types of roads, from major highways to narrow forest roads, can impede movements for certain species of mammals. For data collected by observational methods, body mass, road width, road surface and data collection methods explained 53% of variation among data. Barrier effect decreased as body mass increased, and was increased by greater road width. Paved roads posed stronger barriers compared to gravel dirt roads. Capture-recapture methods tended to detect a weaker barrier effect compared tomethods that tracked individual movements. For data collected by experimental translocation, the probability of crossing following translocation was not affected by road width and body mass. We showed that interspecific variation of mammals in barrier effects can be explained by road characteristics and body size under natural condition, and can be useful to anticipate the species-specific magnitude of barrier effects of roads and aid in planning and design of road projects, as well as reassessment of existing roads.\",\"PeriodicalId\":55036,\"journal\":{\"name\":\"Hystrix-Italian Journal of Mammalogy\",\"volume\":\"21 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hystrix-Italian Journal of Mammalogy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4404/HYSTRIX–00185-2018\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hystrix-Italian Journal of Mammalogy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4404/HYSTRIX–00185-2018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Can we use body size and road characteristics to anticipate barrier effects of roads in mammals? A meta-analysis
Habitat fragmentation and loss caused by road development are recognized as major threats to biodiversity and challenges to reconcile the pursuit of economic growth with the protection of wildlife habitats. Assessment of potential environmental impacts is essential in planning and design of road projects. Behavioral responses such as road avoidance that causes barrier effects are critical in assessment of effects of roads on species persistence. In this study, we synthesized literature of barrier effects on mammals to identify road characteristics and species traits that might serve as management indicators to anticipate barrier effects. We conducted a meta-analysis with 118 statistics of road crossings by 45 species from 36 studies. We used logit-transformed proportion of individuals not crossing roads as the effect size of barrier effect. Overall, all types of roads, from major highways to narrow forest roads, can impede movements for certain species of mammals. For data collected by observational methods, body mass, road width, road surface and data collection methods explained 53% of variation among data. Barrier effect decreased as body mass increased, and was increased by greater road width. Paved roads posed stronger barriers compared to gravel dirt roads. Capture-recapture methods tended to detect a weaker barrier effect compared tomethods that tracked individual movements. For data collected by experimental translocation, the probability of crossing following translocation was not affected by road width and body mass. We showed that interspecific variation of mammals in barrier effects can be explained by road characteristics and body size under natural condition, and can be useful to anticipate the species-specific magnitude of barrier effects of roads and aid in planning and design of road projects, as well as reassessment of existing roads.
期刊介绍:
Hystrix the Italian Journal of Mammalogy accepts papers on original research in basic and applied mammalogy on fossil and living mammals. The Journal is published both in paper and electronic "online first" format. Manuscripts can be published as full papers or short notes, as well as reviews on methods or theoretical issues related to mammals. Commentaries can also be occasionally accepted, under the approval by the Editor in Chief. Investigations of local or regional interest, new data about species distribution and range extensions or confirmatory research can be considered only when they have significant implications. Such studies should preferably be submitted as short notes. Manuscripts bearing only a local interest will not be accepted.
Full papers have no limits in length as well as in figure and table number and are abstracted in English. Authors are encouraged to add supplemental material in form of colour figures, original datasets and/or computer program source code.
Supplemental material and colour figures will appear only on the electronic edition.
Short notes must be about 16000 characters long (including title, author names and affiliations, abstract and references), and do not include supplemental material. They are abstracted in English.
Proceedings of symposia, meetings and/or workshops, and technical reports can be published as special supplements to regular issues, under the approval by the Editor in Chief and the Associate Editors.
There are no page charges.