分形空间中的强迫非线性振子

IF 10.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Ji-Huan He, G. Moatimid, M. Zekry
{"title":"分形空间中的强迫非线性振子","authors":"Ji-Huan He, G. Moatimid, M. Zekry","doi":"10.22190/fume220118004h","DOIUrl":null,"url":null,"abstract":"A critical hurdle of a nonlinear vibration system in a fractal space is the inefficiency in modelling the system. Specifically, the differential equation models cannot elucidate the effect of porosity size and distribution of the periodic property. This paper establishes a fractal-differential model for this purpose, and a fractal Duffing-Van der Pol oscillator (DVdP) with two-scale fractal derivatives and a forced term is considered as an example to reveal the basic properties of the fractal oscillator. Utilizing the two-scale transforms and He-Laplace method, an analytic approximate solution may be attained. Unfortunately, this solution is not physically preferred. It has to be modified along with the nonlinear frequency analysis, and the stability criterion for the equation under consideration is obtained. On the other hand, the linearized stability theory is employed in the autonomous arrangement. Consequently, the phase portraits around the equilibrium points are sketched. For the non-autonomous organization, the stability criteria are analyzed via the multiple time scales technique. Numerical estimations are designed to confirm graphically the analytical approximate solutions as well as the stability configuration. It is revealed that the exciting external force parameter plays a destabilizing role. Furthermore, both of the frequency of the excited force and the stiffness parameter, execute a dual role in the stability picture.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"54 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"FORCED NONLINEAR OSCILLATOR IN A FRACTAL SPACE\",\"authors\":\"Ji-Huan He, G. Moatimid, M. Zekry\",\"doi\":\"10.22190/fume220118004h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical hurdle of a nonlinear vibration system in a fractal space is the inefficiency in modelling the system. Specifically, the differential equation models cannot elucidate the effect of porosity size and distribution of the periodic property. This paper establishes a fractal-differential model for this purpose, and a fractal Duffing-Van der Pol oscillator (DVdP) with two-scale fractal derivatives and a forced term is considered as an example to reveal the basic properties of the fractal oscillator. Utilizing the two-scale transforms and He-Laplace method, an analytic approximate solution may be attained. Unfortunately, this solution is not physically preferred. It has to be modified along with the nonlinear frequency analysis, and the stability criterion for the equation under consideration is obtained. On the other hand, the linearized stability theory is employed in the autonomous arrangement. Consequently, the phase portraits around the equilibrium points are sketched. For the non-autonomous organization, the stability criteria are analyzed via the multiple time scales technique. Numerical estimations are designed to confirm graphically the analytical approximate solutions as well as the stability configuration. It is revealed that the exciting external force parameter plays a destabilizing role. Furthermore, both of the frequency of the excited force and the stiffness parameter, execute a dual role in the stability picture.\",\"PeriodicalId\":51338,\"journal\":{\"name\":\"Facta Universitatis-Series Mechanical Engineering\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22190/fume220118004h\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume220118004h","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 46

摘要

分形空间中非线性振动系统的一个关键障碍是系统建模的低效率。具体来说,微分方程模型不能解释孔隙度大小和周期性分布的影响。本文为此建立了分形-微分模型,并以具有两尺度分形导数和强制项的分形Duffing-Van der Pol振子(DVdP)为例,揭示了分形振子的基本性质。利用双尺度变换和He-Laplace方法,可以得到解析近似解。不幸的是,这种解决方案在物理上不是首选的。在进行非线性频率分析的同时对其进行修正,得到了所考虑方程的稳定性判据。另一方面,将线性化稳定性理论应用于自主布置。因此,画出了平衡点周围的相图。对于非自治组织,采用多时间尺度技术分析了稳定性准则。设计了数值估计,以图形化地确定解析近似解和稳定性构型。结果表明,激振外力参数起着不稳定的作用。此外,激振力的频率和刚度参数在稳定性图中起双重作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FORCED NONLINEAR OSCILLATOR IN A FRACTAL SPACE
A critical hurdle of a nonlinear vibration system in a fractal space is the inefficiency in modelling the system. Specifically, the differential equation models cannot elucidate the effect of porosity size and distribution of the periodic property. This paper establishes a fractal-differential model for this purpose, and a fractal Duffing-Van der Pol oscillator (DVdP) with two-scale fractal derivatives and a forced term is considered as an example to reveal the basic properties of the fractal oscillator. Utilizing the two-scale transforms and He-Laplace method, an analytic approximate solution may be attained. Unfortunately, this solution is not physically preferred. It has to be modified along with the nonlinear frequency analysis, and the stability criterion for the equation under consideration is obtained. On the other hand, the linearized stability theory is employed in the autonomous arrangement. Consequently, the phase portraits around the equilibrium points are sketched. For the non-autonomous organization, the stability criteria are analyzed via the multiple time scales technique. Numerical estimations are designed to confirm graphically the analytical approximate solutions as well as the stability configuration. It is revealed that the exciting external force parameter plays a destabilizing role. Furthermore, both of the frequency of the excited force and the stiffness parameter, execute a dual role in the stability picture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.40
自引率
2.50%
发文量
12
审稿时长
6 weeks
期刊介绍: Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信