Ru(EtCp)2前驱体等离子体增强钌膜原子层沉积研究

A. Rogozhin, A. Miakonkikh, E. Smirnova, A. A. Lomov, S. Simakin, K. Rudenko
{"title":"Ru(EtCp)2前驱体等离子体增强钌膜原子层沉积研究","authors":"A. Rogozhin, A. Miakonkikh, E. Smirnova, A. A. Lomov, S. Simakin, K. Rudenko","doi":"10.3390/COATINGS11020117","DOIUrl":null,"url":null,"abstract":"Ruthenium thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) technology using Ru(EtCp)2 and oxygen plasma on the modified surface of silicon and SiO2/Si substrates. The crystal structure, chemical composition, and morphology of films were characterized by grazing incidence XRD (GXRD), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM) techniques, respectively. It was found that the mechanism of film growth depends crucially on the substrate temperature. The GXRD and SIMS analysis show that at substrate temperature T = 375 °C, an abrupt change in surface reaction mechanisms occurs, leading to the changing in film composition from RuO2 at low temperatures to pure Ru film at higher temperatures. It was confirmed by electrical resistivity measurements for Ru-based films. Mechanical stress in the films was also analyzed, and it was suggested that this factor increases the surface roughness of growing Ru films. The lowest surface roughness ~1.5 nm was achieved with a film thickness of 29 nm using SiO2/Si-substrate for deposition at 375 °C. The measured resistivity of Ru film is 18–19 µOhm·cm (as deposited).","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Plasma Enhanced Atomic Layer Deposition of Ruthenium Films Using Ru(EtCp)2 Precursor\",\"authors\":\"A. Rogozhin, A. Miakonkikh, E. Smirnova, A. A. Lomov, S. Simakin, K. Rudenko\",\"doi\":\"10.3390/COATINGS11020117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ruthenium thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) technology using Ru(EtCp)2 and oxygen plasma on the modified surface of silicon and SiO2/Si substrates. The crystal structure, chemical composition, and morphology of films were characterized by grazing incidence XRD (GXRD), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM) techniques, respectively. It was found that the mechanism of film growth depends crucially on the substrate temperature. The GXRD and SIMS analysis show that at substrate temperature T = 375 °C, an abrupt change in surface reaction mechanisms occurs, leading to the changing in film composition from RuO2 at low temperatures to pure Ru film at higher temperatures. It was confirmed by electrical resistivity measurements for Ru-based films. Mechanical stress in the films was also analyzed, and it was suggested that this factor increases the surface roughness of growing Ru films. The lowest surface roughness ~1.5 nm was achieved with a film thickness of 29 nm using SiO2/Si-substrate for deposition at 375 °C. The measured resistivity of Ru film is 18–19 µOhm·cm (as deposited).\",\"PeriodicalId\":22482,\"journal\":{\"name\":\"THE Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/COATINGS11020117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11020117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用等离子体增强原子层沉积(PEALD)技术,利用Ru(EtCp)2和氧等离子体在改性硅和SiO2/Si衬底表面沉积钌薄膜。利用掠入射x射线衍射(GXRD)、二次离子质谱(SIMS)和原子力显微镜(AFM)技术分别对薄膜的晶体结构、化学成分和形貌进行了表征。研究发现,薄膜的生长机制主要取决于衬底温度。GXRD和SIMS分析表明,在衬底温度T = 375℃时,表面反应机制发生突变,导致薄膜成分由低温下的RuO2转变为高温下的纯Ru薄膜。通过对钌基薄膜的电阻率测量证实了这一点。分析了薄膜中的机械应力,认为机械应力增加了生长Ru薄膜的表面粗糙度。采用SiO2/ si衬底在375℃下沉积,薄膜厚度为29 nm,表面粗糙度最低,为1.5 nm。Ru膜的电阻率测量值为18-19µOhm·cm(沉积状态)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma Enhanced Atomic Layer Deposition of Ruthenium Films Using Ru(EtCp)2 Precursor
Ruthenium thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) technology using Ru(EtCp)2 and oxygen plasma on the modified surface of silicon and SiO2/Si substrates. The crystal structure, chemical composition, and morphology of films were characterized by grazing incidence XRD (GXRD), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM) techniques, respectively. It was found that the mechanism of film growth depends crucially on the substrate temperature. The GXRD and SIMS analysis show that at substrate temperature T = 375 °C, an abrupt change in surface reaction mechanisms occurs, leading to the changing in film composition from RuO2 at low temperatures to pure Ru film at higher temperatures. It was confirmed by electrical resistivity measurements for Ru-based films. Mechanical stress in the films was also analyzed, and it was suggested that this factor increases the surface roughness of growing Ru films. The lowest surface roughness ~1.5 nm was achieved with a film thickness of 29 nm using SiO2/Si-substrate for deposition at 375 °C. The measured resistivity of Ru film is 18–19 µOhm·cm (as deposited).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信