I型X2例外Laguerre多项式的矩表示

Q4 Mathematics
C. Liaw, J. Kelly, J. Osborn
{"title":"I型X2例外Laguerre多项式的矩表示","authors":"C. Liaw, J. Kelly, J. Osborn","doi":"10.37622/adsa/14.1.2019.49-65","DOIUrl":null,"url":null,"abstract":"The $X_m$ exceptional orthogonal polynomials (XOP) form a complete set of eigenpolynomials to a differential equation. Despite being complete, the XOP set does not contain polynomials of every degree. Thereby, the XOP escape the Bochner classification theorem. \nIn literature two ways to obtain XOP have been presented. When m=1, Gram-Schmidt orthogonalization of a so-called \"flag\" was used. For general m, the Darboux transform was applied. \nHere, we present a possible flag for the X_m exceptional Laguerre polynomials. We can write more about this. We only want to make specific picks when we also derive determinantal representations. There is a large degree of freedom in doing so. Further, we derive determinantal representations of the X_2 exceptional Laguerre polynomials involving certain adjusted moments of the exceptional weights. We find a recursion formula for these adjusted moments. The particular canonical flag we pick keeps both the determinantal representation and the moment recursion manageable.","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Moment Representations of Type I X2 Exceptional Laguerre Polynomials\",\"authors\":\"C. Liaw, J. Kelly, J. Osborn\",\"doi\":\"10.37622/adsa/14.1.2019.49-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $X_m$ exceptional orthogonal polynomials (XOP) form a complete set of eigenpolynomials to a differential equation. Despite being complete, the XOP set does not contain polynomials of every degree. Thereby, the XOP escape the Bochner classification theorem. \\nIn literature two ways to obtain XOP have been presented. When m=1, Gram-Schmidt orthogonalization of a so-called \\\"flag\\\" was used. For general m, the Darboux transform was applied. \\nHere, we present a possible flag for the X_m exceptional Laguerre polynomials. We can write more about this. We only want to make specific picks when we also derive determinantal representations. There is a large degree of freedom in doing so. Further, we derive determinantal representations of the X_2 exceptional Laguerre polynomials involving certain adjusted moments of the exceptional weights. We find a recursion formula for these adjusted moments. The particular canonical flag we pick keeps both the determinantal representation and the moment recursion manageable.\",\"PeriodicalId\":36469,\"journal\":{\"name\":\"Advances in Dynamical Systems and Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dynamical Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37622/adsa/14.1.2019.49-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/adsa/14.1.2019.49-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

X_m例外正交多项式(XOP)构成微分方程特征多项式的完备集。尽管是完备的,XOP集合并不包含每一次的多项式。因此,XOP逃避了Bochner分类定理。文献中提出了两种获得XOP的方法。当m=1时,使用所谓的“旗”的Gram-Schmidt正交化。对于一般的m,应用达布变换。这里,我们给出了X_m异常拉盖尔多项式的一个可能标志。我们可以写更多关于这个的内容。我们只希望在导出行列式表示时做出特定的选择。这样做有很大的自由度。进一步,我们导出了X_2例外拉盖尔多项式的行列式表示,其中包含例外权重的某些调整矩。我们找到了这些调整力矩的递归公式。我们选择的特定规范标志使行列式表示和矩递归都易于管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment Representations of Type I X2 Exceptional Laguerre Polynomials
The $X_m$ exceptional orthogonal polynomials (XOP) form a complete set of eigenpolynomials to a differential equation. Despite being complete, the XOP set does not contain polynomials of every degree. Thereby, the XOP escape the Bochner classification theorem. In literature two ways to obtain XOP have been presented. When m=1, Gram-Schmidt orthogonalization of a so-called "flag" was used. For general m, the Darboux transform was applied. Here, we present a possible flag for the X_m exceptional Laguerre polynomials. We can write more about this. We only want to make specific picks when we also derive determinantal representations. There is a large degree of freedom in doing so. Further, we derive determinantal representations of the X_2 exceptional Laguerre polynomials involving certain adjusted moments of the exceptional weights. We find a recursion formula for these adjusted moments. The particular canonical flag we pick keeps both the determinantal representation and the moment recursion manageable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信