一种用于凸点的平面1.88扳手

Q4 Mathematics
Ahmad Biniaz, M. Amani, A. Maheshwari, M. Smid, P. Bose, J. Carufel
{"title":"一种用于凸点的平面1.88扳手","authors":"Ahmad Biniaz, M. Amani, A. Maheshwari, M. Smid, P. Bose, J. Carufel","doi":"10.20382/jocg.v7i1a21","DOIUrl":null,"url":null,"abstract":"Let S be a set of n points in the plane that is in convex position. For a real number t>1, we say that a point p in S is t-good if for every point q of S, the shortest-path distance between p and q along the boundary of the convex hull of S is at most t times the Euclidean distance between p and q. We prove that any point that is part of (an approximation to) the diameter of S is 1.88-good. Using this, we show how to compute a plane 1.88-spanner of S in O(n) time, assuming that the points of S are given in sorted order along their convex hull. Previously, the best known stretch factor for plane spanners was 1.998 (which, in fact, holds for any point set, i.e., even if it is not in convex position).","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"16 1","pages":"520-539"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A plane 1.88-spanner for points in convex position\",\"authors\":\"Ahmad Biniaz, M. Amani, A. Maheshwari, M. Smid, P. Bose, J. Carufel\",\"doi\":\"10.20382/jocg.v7i1a21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let S be a set of n points in the plane that is in convex position. For a real number t>1, we say that a point p in S is t-good if for every point q of S, the shortest-path distance between p and q along the boundary of the convex hull of S is at most t times the Euclidean distance between p and q. We prove that any point that is part of (an approximation to) the diameter of S is 1.88-good. Using this, we show how to compute a plane 1.88-spanner of S in O(n) time, assuming that the points of S are given in sorted order along their convex hull. Previously, the best known stretch factor for plane spanners was 1.998 (which, in fact, holds for any point set, i.e., even if it is not in convex position).\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"16 1\",\"pages\":\"520-539\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v7i1a21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

摘要

设S是平面上凸位置上n个点的集合。对于实数t>1,我们说S中的点p是t-good,如果对于S中的每一个点q, p和q沿着S的凸壳边界的最短路径距离不超过p和q之间的欧氏距离的t倍。我们证明了S直径的一部分(近似)的任何点都是1.88-good。利用这种方法,我们展示了如何在O(n)时间内计算S的平面1.88扳手,假设S的点是沿着它们的凸包按排序顺序给出的。以前,平面扳手最著名的拉伸系数是1.998(事实上,它适用于任何点集,即,即使它不在凸位置)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A plane 1.88-spanner for points in convex position
Let S be a set of n points in the plane that is in convex position. For a real number t>1, we say that a point p in S is t-good if for every point q of S, the shortest-path distance between p and q along the boundary of the convex hull of S is at most t times the Euclidean distance between p and q. We prove that any point that is part of (an approximation to) the diameter of S is 1.88-good. Using this, we show how to compute a plane 1.88-spanner of S in O(n) time, assuming that the points of S are given in sorted order along their convex hull. Previously, the best known stretch factor for plane spanners was 1.998 (which, in fact, holds for any point set, i.e., even if it is not in convex position).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信