氢/s在共合原子石墨烯上分子吸附的第一性原理研究

N. Pantha, S. Thapa, N. Adhikari
{"title":"氢/s在共合原子石墨烯上分子吸附的第一性原理研究","authors":"N. Pantha, S. Thapa, N. Adhikari","doi":"10.3126/jist.v25i1.29418","DOIUrl":null,"url":null,"abstract":"The study of graphene and its allotropes help to understand fundamental science and their role in the industry. The adsorption of transition metal adatom on mono-layer graphene can tune the geometrical, electronic, and magnetic properties of the material according to the requirement for the practical applications. In the present work, the geometrical stability, electronic and magnetic properties, and also the redistribution of electronic charge of single cobalt atom (Co) adsorbed graphene with reference to pure graphene have been investigated to develop a model system for the effective storage of hydrogen. The density functional theory (DFT) based first-principles calculations by incorporating van der Waals (VDW) interactions within DFT-D2 levels of approximation implemented in the quantum ESPRESSO package was used. The band structure and density of states of cobalt-adatom graphene show that the material is metallic and magnetic with a total magnetic moment of 1.55 μB. The change in the electronic distribution of Co-adatom graphene has been found favorable for adsorbing molecular hydrogen/s with greater strength. The increasing number of adsorbed molecular hydrogen/s (n=1 to 7) onto the substrate shows varying binding energy per hydrogen molecule, high enough at low concentration (n=1, 2, and 3), and then decreases slowly on increasing the value of n. The nature of adsorption and binding energy per hydrogen molecule (with a range of 0.116 - 0.731 eV/ H2) are found useful to meet a standard target for hydrogen storage in such materials.","PeriodicalId":16072,"journal":{"name":"Journal of Hunan Institute of Science and Technology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"First-Principles Study of Molecular Adsorption of Hydrogen/s on Co-Adatom Graphene\",\"authors\":\"N. Pantha, S. Thapa, N. Adhikari\",\"doi\":\"10.3126/jist.v25i1.29418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of graphene and its allotropes help to understand fundamental science and their role in the industry. The adsorption of transition metal adatom on mono-layer graphene can tune the geometrical, electronic, and magnetic properties of the material according to the requirement for the practical applications. In the present work, the geometrical stability, electronic and magnetic properties, and also the redistribution of electronic charge of single cobalt atom (Co) adsorbed graphene with reference to pure graphene have been investigated to develop a model system for the effective storage of hydrogen. The density functional theory (DFT) based first-principles calculations by incorporating van der Waals (VDW) interactions within DFT-D2 levels of approximation implemented in the quantum ESPRESSO package was used. The band structure and density of states of cobalt-adatom graphene show that the material is metallic and magnetic with a total magnetic moment of 1.55 μB. The change in the electronic distribution of Co-adatom graphene has been found favorable for adsorbing molecular hydrogen/s with greater strength. The increasing number of adsorbed molecular hydrogen/s (n=1 to 7) onto the substrate shows varying binding energy per hydrogen molecule, high enough at low concentration (n=1, 2, and 3), and then decreases slowly on increasing the value of n. The nature of adsorption and binding energy per hydrogen molecule (with a range of 0.116 - 0.731 eV/ H2) are found useful to meet a standard target for hydrogen storage in such materials.\",\"PeriodicalId\":16072,\"journal\":{\"name\":\"Journal of Hunan Institute of Science and Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hunan Institute of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jist.v25i1.29418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hunan Institute of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jist.v25i1.29418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

石墨烯及其同素异形体的研究有助于理解基础科学及其在工业中的作用。过渡金属吸附原子在单层石墨烯上的吸附可以根据实际应用的需要调整材料的几何、电子和磁性能。在本工作中,研究了单钴原子(Co)吸附石墨烯的几何稳定性,电子和磁性能,以及电子电荷的重新分布,并参考纯石墨烯建立了一个有效储氢的模型系统。基于密度泛函理论(DFT)的第一性原理计算,在量子ESPRESSO包中实现的DFT- d2级近似中结合范德华(VDW)相互作用。钴原子石墨烯的能带结构和态密度表明,该材料具有金属磁性,总磁矩为1.55 μB。共合原子石墨烯电子分布的变化有利于以更大的强度吸附氢/s分子。随着吸附氢分子数/s (n=1 ~ 7)的增加,基底上每个氢分子的结合能也在变化,在低浓度(n=1、2和3)时足够高,然后随着n的增加而缓慢下降。吸附性质和每个氢分子的结合能(范围为0.116 ~ 0.731 eV/ H2)有助于满足此类材料的储氢标准目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Principles Study of Molecular Adsorption of Hydrogen/s on Co-Adatom Graphene
The study of graphene and its allotropes help to understand fundamental science and their role in the industry. The adsorption of transition metal adatom on mono-layer graphene can tune the geometrical, electronic, and magnetic properties of the material according to the requirement for the practical applications. In the present work, the geometrical stability, electronic and magnetic properties, and also the redistribution of electronic charge of single cobalt atom (Co) adsorbed graphene with reference to pure graphene have been investigated to develop a model system for the effective storage of hydrogen. The density functional theory (DFT) based first-principles calculations by incorporating van der Waals (VDW) interactions within DFT-D2 levels of approximation implemented in the quantum ESPRESSO package was used. The band structure and density of states of cobalt-adatom graphene show that the material is metallic and magnetic with a total magnetic moment of 1.55 μB. The change in the electronic distribution of Co-adatom graphene has been found favorable for adsorbing molecular hydrogen/s with greater strength. The increasing number of adsorbed molecular hydrogen/s (n=1 to 7) onto the substrate shows varying binding energy per hydrogen molecule, high enough at low concentration (n=1, 2, and 3), and then decreases slowly on increasing the value of n. The nature of adsorption and binding energy per hydrogen molecule (with a range of 0.116 - 0.731 eV/ H2) are found useful to meet a standard target for hydrogen storage in such materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信