多重共线性存在下零膨胀泊松回归模型的改进估计:产妇死亡数据的模拟与应用

Q4 Mathematics
Talha Omer, P. Sjölander, K. Månsson, B. G. Kibria
{"title":"多重共线性存在下零膨胀泊松回归模型的改进估计:产妇死亡数据的模拟与应用","authors":"Talha Omer, P. Sjölander, K. Månsson, B. G. Kibria","doi":"10.1080/23737484.2021.1952493","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose Liu-type shrinkage estimators for the zero-inflated Poisson regression (ZIPR) model in the presence of multicollinearity. Our new approach is a remedy to the problem of inflated variances for the ML estimation technique—which is a standard approach to estimate these types of count data models. When the data are in the form of non-negative integers with a surplus of zeros it induces overdispersion in the dependent variable. Considerable multicollinearity is frequently observed, but usually disregarded, for these types of data sets. Based on a Monte Carlo study we illustrate that our proposed estimators exhibit better MSE and MAE than the usual ML estimator and some other Liu estimators in the presence of multicollinearity. To demonstrate the advantages and the empirical relevance of our improved estimators, maternal death data are analyzed and the results illustrate similar benefits as is demonstrated in our simulation study.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"26 1","pages":"394 - 412"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved estimators for the zero-inflated Poisson regression model in the presence of multicollinearity: simulation and application of maternal death data\",\"authors\":\"Talha Omer, P. Sjölander, K. Månsson, B. G. Kibria\",\"doi\":\"10.1080/23737484.2021.1952493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we propose Liu-type shrinkage estimators for the zero-inflated Poisson regression (ZIPR) model in the presence of multicollinearity. Our new approach is a remedy to the problem of inflated variances for the ML estimation technique—which is a standard approach to estimate these types of count data models. When the data are in the form of non-negative integers with a surplus of zeros it induces overdispersion in the dependent variable. Considerable multicollinearity is frequently observed, but usually disregarded, for these types of data sets. Based on a Monte Carlo study we illustrate that our proposed estimators exhibit better MSE and MAE than the usual ML estimator and some other Liu estimators in the presence of multicollinearity. To demonstrate the advantages and the empirical relevance of our improved estimators, maternal death data are analyzed and the results illustrate similar benefits as is demonstrated in our simulation study.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"26 1\",\"pages\":\"394 - 412\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2021.1952493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1952493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文提出了存在多重共线性的零膨胀泊松回归(ZIPR)模型的liu型收缩估计量。我们的新方法是对ML估计技术的膨胀方差问题的补救措施-这是估计这些类型的计数数据模型的标准方法。当数据以非负整数的形式存在余零时,会引起因变量的过分散。对于这些类型的数据集,经常观察到相当大的多重共线性,但通常被忽略。基于蒙特卡罗的研究表明,在多重共线性情况下,我们提出的估计量比通常的ML估计量和其他一些Liu估计量表现出更好的MSE和MAE。为了证明我们改进的估计器的优势和经验相关性,对孕产妇死亡数据进行了分析,结果显示了与我们的模拟研究中所展示的类似的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved estimators for the zero-inflated Poisson regression model in the presence of multicollinearity: simulation and application of maternal death data
Abstract In this article, we propose Liu-type shrinkage estimators for the zero-inflated Poisson regression (ZIPR) model in the presence of multicollinearity. Our new approach is a remedy to the problem of inflated variances for the ML estimation technique—which is a standard approach to estimate these types of count data models. When the data are in the form of non-negative integers with a surplus of zeros it induces overdispersion in the dependent variable. Considerable multicollinearity is frequently observed, but usually disregarded, for these types of data sets. Based on a Monte Carlo study we illustrate that our proposed estimators exhibit better MSE and MAE than the usual ML estimator and some other Liu estimators in the presence of multicollinearity. To demonstrate the advantages and the empirical relevance of our improved estimators, maternal death data are analyzed and the results illustrate similar benefits as is demonstrated in our simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信