衰老的地面树木重写系统

M. Hague
{"title":"衰老的地面树木重写系统","authors":"M. Hague","doi":"10.1145/2603088.2603112","DOIUrl":null,"url":null,"abstract":"Ground Tree Rewrite Systems with State are known to have an undecidable control state reachability problem. Taking inspiration from the recent introduction of scope-bounded multi-stack push-down systems, we define Senescent Ground Tree Rewrite Systems. These are a restriction of ground tree rewrite systems with state such that nodes of the tree may no longer be rewritten after having witnessed an a priori fixed number of control state changes. As well as generalising scope-bounded multi-stack pushdown systems, we show --- via reductions to and from reset Petri-nets --- that these systems have an Ackermann-complete control state reachability problem. However, reachability of a regular set of trees remains undecidable.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Senescent ground tree rewrite systems\",\"authors\":\"M. Hague\",\"doi\":\"10.1145/2603088.2603112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground Tree Rewrite Systems with State are known to have an undecidable control state reachability problem. Taking inspiration from the recent introduction of scope-bounded multi-stack push-down systems, we define Senescent Ground Tree Rewrite Systems. These are a restriction of ground tree rewrite systems with state such that nodes of the tree may no longer be rewritten after having witnessed an a priori fixed number of control state changes. As well as generalising scope-bounded multi-stack pushdown systems, we show --- via reductions to and from reset Petri-nets --- that these systems have an Ackermann-complete control state reachability problem. However, reachability of a regular set of trees remains undecidable.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

具有状态的地面树重写系统具有不可确定的控制状态可达性问题。从最近引入的范围有限的多堆栈下推系统中获得灵感,我们定义了衰老地面树重写系统。这是对具有状态的地面树重写系统的限制,这样树的节点可能在目睹了先验的固定数量的控制状态更改后不再被重写。除了推广范围有界的多堆栈下推系统外,我们还通过对重置petri网的约简表明,这些系统具有ackermann -完全控制状态可达性问题。然而,一组常规树的可达性仍然是不可确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Senescent ground tree rewrite systems
Ground Tree Rewrite Systems with State are known to have an undecidable control state reachability problem. Taking inspiration from the recent introduction of scope-bounded multi-stack push-down systems, we define Senescent Ground Tree Rewrite Systems. These are a restriction of ground tree rewrite systems with state such that nodes of the tree may no longer be rewritten after having witnessed an a priori fixed number of control state changes. As well as generalising scope-bounded multi-stack pushdown systems, we show --- via reductions to and from reset Petri-nets --- that these systems have an Ackermann-complete control state reachability problem. However, reachability of a regular set of trees remains undecidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信