{"title":"衰老的地面树木重写系统","authors":"M. Hague","doi":"10.1145/2603088.2603112","DOIUrl":null,"url":null,"abstract":"Ground Tree Rewrite Systems with State are known to have an undecidable control state reachability problem. Taking inspiration from the recent introduction of scope-bounded multi-stack push-down systems, we define Senescent Ground Tree Rewrite Systems. These are a restriction of ground tree rewrite systems with state such that nodes of the tree may no longer be rewritten after having witnessed an a priori fixed number of control state changes. As well as generalising scope-bounded multi-stack pushdown systems, we show --- via reductions to and from reset Petri-nets --- that these systems have an Ackermann-complete control state reachability problem. However, reachability of a regular set of trees remains undecidable.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Senescent ground tree rewrite systems\",\"authors\":\"M. Hague\",\"doi\":\"10.1145/2603088.2603112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground Tree Rewrite Systems with State are known to have an undecidable control state reachability problem. Taking inspiration from the recent introduction of scope-bounded multi-stack push-down systems, we define Senescent Ground Tree Rewrite Systems. These are a restriction of ground tree rewrite systems with state such that nodes of the tree may no longer be rewritten after having witnessed an a priori fixed number of control state changes. As well as generalising scope-bounded multi-stack pushdown systems, we show --- via reductions to and from reset Petri-nets --- that these systems have an Ackermann-complete control state reachability problem. However, reachability of a regular set of trees remains undecidable.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ground Tree Rewrite Systems with State are known to have an undecidable control state reachability problem. Taking inspiration from the recent introduction of scope-bounded multi-stack push-down systems, we define Senescent Ground Tree Rewrite Systems. These are a restriction of ground tree rewrite systems with state such that nodes of the tree may no longer be rewritten after having witnessed an a priori fixed number of control state changes. As well as generalising scope-bounded multi-stack pushdown systems, we show --- via reductions to and from reset Petri-nets --- that these systems have an Ackermann-complete control state reachability problem. However, reachability of a regular set of trees remains undecidable.