基于gpu的私有信息检索协议硬件加速

Mihai Maruseac, Gabriel Ghinita, Ming Ouyang, R. Rughinis
{"title":"基于gpu的私有信息检索协议硬件加速","authors":"Mihai Maruseac, Gabriel Ghinita, Ming Ouyang, R. Rughinis","doi":"10.1109/ASAP.2015.7245719","DOIUrl":null,"url":null,"abstract":"Private Information Retrieval (PIR) protocols allow users to search for data items stored at an untrusted server, without disclosing to the server the search attributes. Several computational PIR protocols provide cryptographic-strength guarantees for the privacy of users, building upon well-known hard mathematical problems, such as factorisation of large integers. Unfortunately, the computational-intensive nature of these solutions results in significant performance overhead, preventing their adoption in practice. In this paper, we employ graphical processing units (GPUs) to speed up the cryptographic operations required by PIR. We identify the challenges that arise when using GPUs for PIR and we propose solutions to address them. To the best of our knowledge, this is the first work to use GPUs for efficient private information retrieval, and an important first step towards GPU-based acceleration of a broader range of secure data operations. Our experimental evaluation shows that GPUs improve performance by more than an order of magnitude.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"4 1","pages":"120-127"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hardware acceleration of Private Information Retrieval protocols using GPUs\",\"authors\":\"Mihai Maruseac, Gabriel Ghinita, Ming Ouyang, R. Rughinis\",\"doi\":\"10.1109/ASAP.2015.7245719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Private Information Retrieval (PIR) protocols allow users to search for data items stored at an untrusted server, without disclosing to the server the search attributes. Several computational PIR protocols provide cryptographic-strength guarantees for the privacy of users, building upon well-known hard mathematical problems, such as factorisation of large integers. Unfortunately, the computational-intensive nature of these solutions results in significant performance overhead, preventing their adoption in practice. In this paper, we employ graphical processing units (GPUs) to speed up the cryptographic operations required by PIR. We identify the challenges that arise when using GPUs for PIR and we propose solutions to address them. To the best of our knowledge, this is the first work to use GPUs for efficient private information retrieval, and an important first step towards GPU-based acceleration of a broader range of secure data operations. Our experimental evaluation shows that GPUs improve performance by more than an order of magnitude.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"4 1\",\"pages\":\"120-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2015.7245719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

私有信息检索(Private Information Retrieval, PIR)协议允许用户搜索存储在不受信任的服务器上的数据项,而无需向服务器透露搜索属性。一些计算PIR协议为用户的隐私提供了加密强度保证,它们建立在众所周知的数学难题(如大整数的因数分解)之上。不幸的是,这些解决方案的计算密集型特性导致了显著的性能开销,阻碍了它们在实践中的采用。在本文中,我们使用图形处理单元(gpu)来加快PIR所需的加密操作。我们确定了将gpu用于PIR时出现的挑战,并提出了解决这些挑战的解决方案。据我们所知,这是第一个使用gpu进行高效私人信息检索的工作,也是迈向基于gpu的更广泛安全数据操作加速的重要的第一步。我们的实验评估表明,gpu提高性能超过一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware acceleration of Private Information Retrieval protocols using GPUs
Private Information Retrieval (PIR) protocols allow users to search for data items stored at an untrusted server, without disclosing to the server the search attributes. Several computational PIR protocols provide cryptographic-strength guarantees for the privacy of users, building upon well-known hard mathematical problems, such as factorisation of large integers. Unfortunately, the computational-intensive nature of these solutions results in significant performance overhead, preventing their adoption in practice. In this paper, we employ graphical processing units (GPUs) to speed up the cryptographic operations required by PIR. We identify the challenges that arise when using GPUs for PIR and we propose solutions to address them. To the best of our knowledge, this is the first work to use GPUs for efficient private information retrieval, and an important first step towards GPU-based acceleration of a broader range of secure data operations. Our experimental evaluation shows that GPUs improve performance by more than an order of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信