利用模式挖掘训练提高表格推理能力

Q3 Environmental Science
Abhilash Shankarampeta, Vivek Gupta, Shuo Zhang
{"title":"利用模式挖掘训练提高表格推理能力","authors":"Abhilash Shankarampeta, Vivek Gupta, Shuo Zhang","doi":"10.48550/arXiv.2210.12259","DOIUrl":null,"url":null,"abstract":"Recent methods based on pre-trained language models have exhibited superior performance over tabular tasks (e.g., tabular NLI), despite showing inherent problems such as not using the right evidence and inconsistent predictions across inputs while reasoning over the tabular data (Gupta et al., 2021). In this work, we utilize Pattern-Exploiting Training (PET) (i.e., strategic MLM) on pre-trained language models to strengthen these tabular reasoning models’ pre-existing knowledge and reasoning abilities. Our upgraded model exhibits a superior understanding of knowledge facts and tabular reasoning compared to current baselines. Additionally, we demonstrate that such models are more effective for underlying downstream tasks of tabular inference on INFOTABS. Furthermore, we show our model’s robustness against adversarial sets generated through various character and word level perturbations.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"265 1","pages":"706-726"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhancing Tabular Reasoning with Pattern Exploiting Training\",\"authors\":\"Abhilash Shankarampeta, Vivek Gupta, Shuo Zhang\",\"doi\":\"10.48550/arXiv.2210.12259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent methods based on pre-trained language models have exhibited superior performance over tabular tasks (e.g., tabular NLI), despite showing inherent problems such as not using the right evidence and inconsistent predictions across inputs while reasoning over the tabular data (Gupta et al., 2021). In this work, we utilize Pattern-Exploiting Training (PET) (i.e., strategic MLM) on pre-trained language models to strengthen these tabular reasoning models’ pre-existing knowledge and reasoning abilities. Our upgraded model exhibits a superior understanding of knowledge facts and tabular reasoning compared to current baselines. Additionally, we demonstrate that such models are more effective for underlying downstream tasks of tabular inference on INFOTABS. Furthermore, we show our model’s robustness against adversarial sets generated through various character and word level perturbations.\",\"PeriodicalId\":39298,\"journal\":{\"name\":\"AACL Bioflux\",\"volume\":\"265 1\",\"pages\":\"706-726\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AACL Bioflux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.12259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.12259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4

摘要

最近基于预训练语言模型的方法表现出优于表格任务(例如,表格NLI)的性能,尽管存在固有的问题,例如在对表格数据进行推理时没有使用正确的证据和跨输入的预测不一致(Gupta等人,2021)。在这项工作中,我们在预训练的语言模型上使用模式开发训练(PET)(即战略MLM)来增强这些表格推理模型的预先存在的知识和推理能力。与目前的基线相比,我们升级的模型显示出对知识事实和表格推理的更好理解。此外,我们证明了这种模型对于INFOTABS上的表格推理的底层下游任务更有效。此外,我们展示了我们的模型对通过各种字符和单词水平扰动产生的对抗集的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Tabular Reasoning with Pattern Exploiting Training
Recent methods based on pre-trained language models have exhibited superior performance over tabular tasks (e.g., tabular NLI), despite showing inherent problems such as not using the right evidence and inconsistent predictions across inputs while reasoning over the tabular data (Gupta et al., 2021). In this work, we utilize Pattern-Exploiting Training (PET) (i.e., strategic MLM) on pre-trained language models to strengthen these tabular reasoning models’ pre-existing knowledge and reasoning abilities. Our upgraded model exhibits a superior understanding of knowledge facts and tabular reasoning compared to current baselines. Additionally, we demonstrate that such models are more effective for underlying downstream tasks of tabular inference on INFOTABS. Furthermore, we show our model’s robustness against adversarial sets generated through various character and word level perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信