完全图分解为八边五边形连通单环图

D. Froncek, O'Neill Kingston
{"title":"完全图分解为八边五边形连通单环图","authors":"D. Froncek, O'Neill Kingston","doi":"10.19184/IJC.2019.3.1.3","DOIUrl":null,"url":null,"abstract":"<p>A <span class=\"math\"><em>G</em></span>-decomposition of the complete graph <span class=\"math\"><em>K</em><sub><em>n</em></sub></span> is a family of pairwise edge disjoint subgraphs of <span class=\"math\"><em>K</em><sub><em>n</em></sub></span>, all isomorphic to <span class=\"math\"><em>G</em></span>, such that every edge of <span class=\"math\"><em>K</em><sub><em>n</em></sub></span> belongs to exactly one copy of <span class=\"math\"><em>G</em></span>. Using standard decomposition techniques based on <span class=\"math\"><em>ρ</em></span>-labelings, introduced by Rosa in 1967, and their modifications we show that each of the ten non-isomorphic connected unicyclic graphs with eight edges containing the pentagon decomposes the complete graph <span class=\"math\"><em>K</em><sub><em>n</em></sub></span> whenever the necessary conditions are satisfied.</p>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decomposition of complete graphs into connected unicyclic graphs with eight edges and pentagon\",\"authors\":\"D. Froncek, O'Neill Kingston\",\"doi\":\"10.19184/IJC.2019.3.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span class=\\\"math\\\"><em>G</em></span>-decomposition of the complete graph <span class=\\\"math\\\"><em>K</em><sub><em>n</em></sub></span> is a family of pairwise edge disjoint subgraphs of <span class=\\\"math\\\"><em>K</em><sub><em>n</em></sub></span>, all isomorphic to <span class=\\\"math\\\"><em>G</em></span>, such that every edge of <span class=\\\"math\\\"><em>K</em><sub><em>n</em></sub></span> belongs to exactly one copy of <span class=\\\"math\\\"><em>G</em></span>. Using standard decomposition techniques based on <span class=\\\"math\\\"><em>ρ</em></span>-labelings, introduced by Rosa in 1967, and their modifications we show that each of the ten non-isomorphic connected unicyclic graphs with eight edges containing the pentagon decomposes the complete graph <span class=\\\"math\\\"><em>K</em><sub><em>n</em></sub></span> whenever the necessary conditions are satisfied.</p>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/IJC.2019.3.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/IJC.2019.3.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

完全图Kn的G分解是Kn的一对边不相交子图族,它们都与G同构,使得Kn的每条边都属于G的一个副本。利用1967年由Rosa引入的基于ρ-标记的标准分解技术及其修正,我们证明了只要满足必要条件,10个有8条边包含五边形的非同构连通单环图中的每一个都分解了完全图Kn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of complete graphs into connected unicyclic graphs with eight edges and pentagon

A G-decomposition of the complete graph Kn is a family of pairwise edge disjoint subgraphs of Kn, all isomorphic to G, such that every edge of Kn belongs to exactly one copy of G. Using standard decomposition techniques based on ρ-labelings, introduced by Rosa in 1967, and their modifications we show that each of the ten non-isomorphic connected unicyclic graphs with eight edges containing the pentagon decomposes the complete graph Kn whenever the necessary conditions are satisfied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信