耦合拉长玻色-爱因斯坦凝聚体中准粒子的色散关系和自定域

M. Momme, O. O. Prikhodko, Yuriy Bidasyuk
{"title":"耦合拉长玻色-爱因斯坦凝聚体中准粒子的色散关系和自定域","authors":"M. Momme, O. O. Prikhodko, Yuriy Bidasyuk","doi":"10.1103/physreva.102.043316","DOIUrl":null,"url":null,"abstract":"We present a detailed study of the spectrum and dispersion of Bogoliubov quasiparticles in two coupled elongated Bose-Einstein condensates. We develop an analytically solvable model that approximates two infinite homogeneous condensates and compare its predictions to a numerical simulation of a realistic trapped system. While the comparisons show a reasonable agreement between the two models, they also manifest the existence of several anomalous Bogoliubov modes in the spectrum. These modes show degeneracy in both energy and momentum together with self-localization in the coordinate space.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dispersion relations and self-localization of quasiparticles in coupled elongated Bose-Einstein condensates\",\"authors\":\"M. Momme, O. O. Prikhodko, Yuriy Bidasyuk\",\"doi\":\"10.1103/physreva.102.043316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a detailed study of the spectrum and dispersion of Bogoliubov quasiparticles in two coupled elongated Bose-Einstein condensates. We develop an analytically solvable model that approximates two infinite homogeneous condensates and compare its predictions to a numerical simulation of a realistic trapped system. While the comparisons show a reasonable agreement between the two models, they also manifest the existence of several anomalous Bogoliubov modes in the spectrum. These modes show degeneracy in both energy and momentum together with self-localization in the coordinate space.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.102.043316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.102.043316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们详细研究了波格留波夫准粒子在两个耦合的拉长玻色-爱因斯坦凝聚体中的光谱和色散。我们开发了一个解析可解的模型,它近似于两个无限均质冷凝物,并将其预测与实际捕获系统的数值模拟进行了比较。虽然比较表明两种模式之间有合理的一致性,但它们也表明谱中存在几个异常波格留波夫模态。这些模在能量和动量上均表现出简并性,并在坐标空间上具有自定域性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersion relations and self-localization of quasiparticles in coupled elongated Bose-Einstein condensates
We present a detailed study of the spectrum and dispersion of Bogoliubov quasiparticles in two coupled elongated Bose-Einstein condensates. We develop an analytically solvable model that approximates two infinite homogeneous condensates and compare its predictions to a numerical simulation of a realistic trapped system. While the comparisons show a reasonable agreement between the two models, they also manifest the existence of several anomalous Bogoliubov modes in the spectrum. These modes show degeneracy in both energy and momentum together with self-localization in the coordinate space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信