{"title":"具有分数阶拉普拉斯记忆和非线性记忆的阻尼波动方程的爆破结果","authors":"Tayeb Hadj Kaddour, A. Hakem","doi":"10.24193/subbmath.2022.4.04","DOIUrl":null,"url":null,"abstract":"\"The goal of this paper is to study the nonexistence of nontrivial solutions of the following Cauchy problem $$\\left\\{ \\begin{array}{ll} u_{tt}+(-\\Delta)^{\\beta/2} u+u_{t}=\\displaystyle\\int_{0}^{t}\\left(t-\\tau \\right) ^{-\\gamma}\\left\\vert u(\\tau ,\\cdot) \\right\\vert^{p}d\\tau,\\\\ \\cr u(0,x)=u_{0}(x),\\quad u_t(0,x)=u_1(x),\\quad x\\in\\mathbb{R}^n, \\end{array}\\right.$$ where $p>1,\\ 0<\\gamma <1,\\,\\, \\beta\\in(0,2) $ and $(-\\Delta)^{\\beta/2} $ is the fractional Laplacian operator of order $\\frac{\\beta}{2}$. Our approach is based on the test function method.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up results for damped wave equation with fractional Laplacian and non linear memory\",\"authors\":\"Tayeb Hadj Kaddour, A. Hakem\",\"doi\":\"10.24193/subbmath.2022.4.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The goal of this paper is to study the nonexistence of nontrivial solutions of the following Cauchy problem $$\\\\left\\\\{ \\\\begin{array}{ll} u_{tt}+(-\\\\Delta)^{\\\\beta/2} u+u_{t}=\\\\displaystyle\\\\int_{0}^{t}\\\\left(t-\\\\tau \\\\right) ^{-\\\\gamma}\\\\left\\\\vert u(\\\\tau ,\\\\cdot) \\\\right\\\\vert^{p}d\\\\tau,\\\\\\\\ \\\\cr u(0,x)=u_{0}(x),\\\\quad u_t(0,x)=u_1(x),\\\\quad x\\\\in\\\\mathbb{R}^n, \\\\end{array}\\\\right.$$ where $p>1,\\\\ 0<\\\\gamma <1,\\\\,\\\\, \\\\beta\\\\in(0,2) $ and $(-\\\\Delta)^{\\\\beta/2} $ is the fractional Laplacian operator of order $\\\\frac{\\\\beta}{2}$. Our approach is based on the test function method.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.4.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.4.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blow-up results for damped wave equation with fractional Laplacian and non linear memory
"The goal of this paper is to study the nonexistence of nontrivial solutions of the following Cauchy problem $$\left\{ \begin{array}{ll} u_{tt}+(-\Delta)^{\beta/2} u+u_{t}=\displaystyle\int_{0}^{t}\left(t-\tau \right) ^{-\gamma}\left\vert u(\tau ,\cdot) \right\vert^{p}d\tau,\\ \cr u(0,x)=u_{0}(x),\quad u_t(0,x)=u_1(x),\quad x\in\mathbb{R}^n, \end{array}\right.$$ where $p>1,\ 0<\gamma <1,\,\, \beta\in(0,2) $ and $(-\Delta)^{\beta/2} $ is the fractional Laplacian operator of order $\frac{\beta}{2}$. Our approach is based on the test function method."