BP-GA模型及其在水质评价中的应用研究

Yongyong Li, Lin Zhu, Lijuan Zhao, Jun Jiang
{"title":"BP-GA模型及其在水质评价中的应用研究","authors":"Yongyong Li, Lin Zhu, Lijuan Zhao, Jun Jiang","doi":"10.1109/ISWREP.2011.5893456","DOIUrl":null,"url":null,"abstract":"Improving the convergence speed and global searching ability of Back Propagation network (BP) always occupies a significant and sophisticated subject. This paper improves the intelligent model by coupling the Genetic Algorithm (GA). Specific improvements include initializing multiple sets of BP's weights and thresholds, setting a smaller BP training epoch and building the fitness function by inputting verification data for BP. The process of building the BP-GA model is explained in detail. Take the water quality assessment in Baiyangdian wetland as an example. The output of this model is compared with the one by using the fuzzy synthetic evaluation method. Result shows that the trained BP-GA model can be effectively used to assess the water quality.","PeriodicalId":6425,"journal":{"name":"2011 International Symposium on Water Resource and Environmental Protection","volume":"4 1","pages":"2781-2784"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on the BP-GA model and its application in water quality assessment\",\"authors\":\"Yongyong Li, Lin Zhu, Lijuan Zhao, Jun Jiang\",\"doi\":\"10.1109/ISWREP.2011.5893456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the convergence speed and global searching ability of Back Propagation network (BP) always occupies a significant and sophisticated subject. This paper improves the intelligent model by coupling the Genetic Algorithm (GA). Specific improvements include initializing multiple sets of BP's weights and thresholds, setting a smaller BP training epoch and building the fitness function by inputting verification data for BP. The process of building the BP-GA model is explained in detail. Take the water quality assessment in Baiyangdian wetland as an example. The output of this model is compared with the one by using the fuzzy synthetic evaluation method. Result shows that the trained BP-GA model can be effectively used to assess the water quality.\",\"PeriodicalId\":6425,\"journal\":{\"name\":\"2011 International Symposium on Water Resource and Environmental Protection\",\"volume\":\"4 1\",\"pages\":\"2781-2784\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Water Resource and Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWREP.2011.5893456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Water Resource and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWREP.2011.5893456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提高BP网络的收敛速度和全局搜索能力一直是一个重要而复杂的课题。本文结合遗传算法对智能模型进行了改进。具体改进包括初始化多组BP的权值和阈值,设置更小的BP训练历元,通过输入BP的验证数据构建适应度函数。详细阐述了BP-GA模型的建立过程。以白洋淀湿地水质评价为例。用模糊综合评价法对模型的输出结果进行了比较。结果表明,训练后的BP-GA模型可以有效地用于水质评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the BP-GA model and its application in water quality assessment
Improving the convergence speed and global searching ability of Back Propagation network (BP) always occupies a significant and sophisticated subject. This paper improves the intelligent model by coupling the Genetic Algorithm (GA). Specific improvements include initializing multiple sets of BP's weights and thresholds, setting a smaller BP training epoch and building the fitness function by inputting verification data for BP. The process of building the BP-GA model is explained in detail. Take the water quality assessment in Baiyangdian wetland as an example. The output of this model is compared with the one by using the fuzzy synthetic evaluation method. Result shows that the trained BP-GA model can be effectively used to assess the water quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信