J. Kurek, J. Aleksiejuk-Gawron, Izabella Antoniuk, J. Górski, Albina Jegorowa, M. Kruk, A. Orłowski, J. Pach, B. Świderski, Grzegorz Wieczorek
{"title":"基于卷积神经网络的钻头磨损分类迁移学习改进的数据增强技术","authors":"J. Kurek, J. Aleksiejuk-Gawron, Izabella Antoniuk, J. Górski, Albina Jegorowa, M. Kruk, A. Orłowski, J. Pach, B. Świderski, Grzegorz Wieczorek","doi":"10.22630/mgv.2019.28.1.1","DOIUrl":null,"url":null,"abstract":"This paper presents an improved method for recognizing the drill state on the basis of hole images drilled in a laminated chipboard, using convolutional neural network (CNN) and data augmentation techniques. Three classes were used to describe the drill state: red -- for drill that is worn out and should be replaced, yellow -- for state in which the system should send a warning to the operator, indicating that this element should be checked manually, and green -- denoting the drill that is still in good condition, which allows for further use in the production process. The presented method combines the advantages of transfer learning and data augmentation methods to improve the accuracy of the received evaluations. In contrast to the classical deep learning methods, transfer learning requires much smaller training data sets to achieve acceptable results. At the same time, data augmentation customized for drill wear recognition makes it possible to expand the original dataset and to improve the overall accuracy. The experiments performed have confirmed the suitability of the presented approach to accurate class recognition in the given problem, even while using a small original dataset.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network\",\"authors\":\"J. Kurek, J. Aleksiejuk-Gawron, Izabella Antoniuk, J. Górski, Albina Jegorowa, M. Kruk, A. Orłowski, J. Pach, B. Świderski, Grzegorz Wieczorek\",\"doi\":\"10.22630/mgv.2019.28.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved method for recognizing the drill state on the basis of hole images drilled in a laminated chipboard, using convolutional neural network (CNN) and data augmentation techniques. Three classes were used to describe the drill state: red -- for drill that is worn out and should be replaced, yellow -- for state in which the system should send a warning to the operator, indicating that this element should be checked manually, and green -- denoting the drill that is still in good condition, which allows for further use in the production process. The presented method combines the advantages of transfer learning and data augmentation methods to improve the accuracy of the received evaluations. In contrast to the classical deep learning methods, transfer learning requires much smaller training data sets to achieve acceptable results. At the same time, data augmentation customized for drill wear recognition makes it possible to expand the original dataset and to improve the overall accuracy. The experiments performed have confirmed the suitability of the presented approach to accurate class recognition in the given problem, even while using a small original dataset.\",\"PeriodicalId\":39750,\"journal\":{\"name\":\"Machine Graphics and Vision\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/mgv.2019.28.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2019.28.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network
This paper presents an improved method for recognizing the drill state on the basis of hole images drilled in a laminated chipboard, using convolutional neural network (CNN) and data augmentation techniques. Three classes were used to describe the drill state: red -- for drill that is worn out and should be replaced, yellow -- for state in which the system should send a warning to the operator, indicating that this element should be checked manually, and green -- denoting the drill that is still in good condition, which allows for further use in the production process. The presented method combines the advantages of transfer learning and data augmentation methods to improve the accuracy of the received evaluations. In contrast to the classical deep learning methods, transfer learning requires much smaller training data sets to achieve acceptable results. At the same time, data augmentation customized for drill wear recognition makes it possible to expand the original dataset and to improve the overall accuracy. The experiments performed have confirmed the suitability of the presented approach to accurate class recognition in the given problem, even while using a small original dataset.
期刊介绍:
Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling