腹腔镜胆囊切除术手术辅助系统的多任务DSSD架构

Chakka Sai Pradeep, N. Sinha
{"title":"腹腔镜胆囊切除术手术辅助系统的多任务DSSD架构","authors":"Chakka Sai Pradeep, N. Sinha","doi":"10.1109/ISBI52829.2022.9761562","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel DSSD based encoder-decoder multi-tasking architecture for the simultaneous tasks of (i) surgical tool presence detection, (ii) surgical tool localization and (iii) surgical phase classification - all on laparoscopic cholecystectomy surgical videos for the purpose of visual surgical assistance. Novelty of the study lies in addressing all the three tasks simultaneously with a single network architecture. Peak performance was achieved on m2cai16-tool-locations dataset at 97.51% mAP for the task of surgical tool presence detection, 91.9% mAP for the task of surgical tool localization (20% higher than SOTA), 97.77% accuracy for the task of surgical phase classification. This multi-tasking approach reduces the demand over training images needing only 2025 training images as against 2.3M images required otherwise. Besides, the approach needs only less than 30% of the model parameters than those that perform each of these tasks separately.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"70 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Tasking DSSD Architecture for Laparoscopic Cholecystectomy Surgical Assistance Systems\",\"authors\":\"Chakka Sai Pradeep, N. Sinha\",\"doi\":\"10.1109/ISBI52829.2022.9761562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel DSSD based encoder-decoder multi-tasking architecture for the simultaneous tasks of (i) surgical tool presence detection, (ii) surgical tool localization and (iii) surgical phase classification - all on laparoscopic cholecystectomy surgical videos for the purpose of visual surgical assistance. Novelty of the study lies in addressing all the three tasks simultaneously with a single network architecture. Peak performance was achieved on m2cai16-tool-locations dataset at 97.51% mAP for the task of surgical tool presence detection, 91.9% mAP for the task of surgical tool localization (20% higher than SOTA), 97.77% accuracy for the task of surgical phase classification. This multi-tasking approach reduces the demand over training images needing only 2025 training images as against 2.3M images required otherwise. Besides, the approach needs only less than 30% of the model parameters than those that perform each of these tasks separately.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"70 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种新的基于DSSD的编码器-解码器多任务架构,用于同时完成(i)手术工具存在检测,(ii)手术工具定位和(iii)手术阶段分类-所有这些都是在腹腔镜胆囊切除术手术视频上进行的,目的是为了视觉手术辅助。该研究的新颖之处在于用单一的网络架构同时解决这三个任务。在m2cai16-tool-locations数据集上,手术工具存在检测任务的mAP达到97.51%,手术工具定位任务的mAP达到91.9%(比SOTA高20%),手术阶段分类任务的mAP达到97.77%。这种多任务处理方法减少了对训练图像的需求,只需要2025张训练图像,而不需要230万张。此外,与单独执行这些任务相比,该方法只需要不到30%的模型参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Tasking DSSD Architecture for Laparoscopic Cholecystectomy Surgical Assistance Systems
In this paper, we propose a novel DSSD based encoder-decoder multi-tasking architecture for the simultaneous tasks of (i) surgical tool presence detection, (ii) surgical tool localization and (iii) surgical phase classification - all on laparoscopic cholecystectomy surgical videos for the purpose of visual surgical assistance. Novelty of the study lies in addressing all the three tasks simultaneously with a single network architecture. Peak performance was achieved on m2cai16-tool-locations dataset at 97.51% mAP for the task of surgical tool presence detection, 91.9% mAP for the task of surgical tool localization (20% higher than SOTA), 97.77% accuracy for the task of surgical phase classification. This multi-tasking approach reduces the demand over training images needing only 2025 training images as against 2.3M images required otherwise. Besides, the approach needs only less than 30% of the model parameters than those that perform each of these tasks separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信