对流-扩散-反应方程代数稳定离散化解的评估

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Abhinav K. Jha, Ondvrej P'artl, N. Ahmed, D. Kuzmin
{"title":"对流-扩散-反应方程代数稳定离散化解的评估","authors":"Abhinav K. Jha, Ondvrej P'artl, N. Ahmed, D. Kuzmin","doi":"10.1515/jnma-2021-0123","DOIUrl":null,"url":null,"abstract":"Abstract We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and ℙ1 or ℚ1 finite elements. Time integration is performed using the Crank–Nicolson method or an explicit strong stability preserving Runge–Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time dependent and stationary convection–diffusion–reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An assessment of solvers for algebraically stabilized discretizations of convection–diffusion–reaction equations\",\"authors\":\"Abhinav K. Jha, Ondvrej P'artl, N. Ahmed, D. Kuzmin\",\"doi\":\"10.1515/jnma-2021-0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and ℙ1 or ℚ1 finite elements. Time integration is performed using the Crank–Nicolson method or an explicit strong stability preserving Runge–Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time dependent and stationary convection–diffusion–reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0123\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0123","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了三维对流主导输运问题的通量校正有限元离散化,并评估了基于这种近似的算法的计算效率。正在研究的方法包括通量校正输运方案和单片限制器。我们使用连续伽辽金方法和 1或π 1有限元在空间上离散化。时间积分采用Crank-Nicolson方法或显式强稳定保持龙格-库塔方法进行。非线性系统的求解采用不动点迭代法,该方法要求在每次迭代或时间步长求解大型线性系统。在选择离散化方法和求解器组件时,需要对现有方法进行专门的比较研究。为了进行这样的研究,我们定义了新的三维测试问题的时间依赖和平稳对流扩散反应方程。我们的数值实验结果说明了限制技术、时间离散化和求解器对整体性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An assessment of solvers for algebraically stabilized discretizations of convection–diffusion–reaction equations
Abstract We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and ℙ1 or ℚ1 finite elements. Time integration is performed using the Crank–Nicolson method or an explicit strong stability preserving Runge–Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time dependent and stationary convection–diffusion–reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信